The Secure Socket API:
TLS as an Operating System Service

Published in: 27th USENIX Security Symposium, 2018

Summarized by
Sangwon Lim (sangwonlim@snu.ac.kr)
2022-10-31

mailto:sangwonlim@snu.ac.kr

Contents

* Introduction

« Motivation

« Secure Socket API (SSA) Design Goals
* OpenSSL Analysis

* The Secure Socket API (SSA)

* Implementation

* Discussion

» Conclusion

2117

Introduction

* Transport Layer Security (TLS) is the most popular security
protocol used on the Internet

* Because of the complex security APIs, developers make
frequent mistakes

* The authors present the Secure Socket AP| (SSA), a TLS API for
applications designed to work within the confines of the existing
standard POSIX socket API already familiar to developers

3717

Introduction

* The Contributions of this paper

« An analysis of contemporary use of TLS by 410 Linux packages and a
qualitative breakdown of OpenSSL’s 504 API endpoints for TLS
functionality

« A description of the Secure Socket API and how it fits within the
existing POSIX socket API, with descriptions of the relevant functions,
constants, and administrator controls

« A description of and source code for a prototype implementation of the
Secure Socket API

A description of and source code for a tool that dynamically ports
existing OpenSSL-using applications to use the SSA without requiring
modification

417

Motivation

* TLS use by applications is mired by complicated APIs and
developer mistakes

=» Developers lack a common, usable security API

« Arelated problem is that the reliance on application developers
to implement security inhibits the control administrators have
over their own machines

=» Administrators lack control over secure connections

5/17

Secure Socket API (SSA) Design Goals

» Both easy to use for developers and grants a high degree of
control to system administrators

1. Enable developers to use TLS through the existing set of functions
provided by the POSIX socket API

2. Support direct administrator control over the parameters and settings
for TLS connections made by the SSA

3. Export a minimal set of TLS options to applications that allow general
TLS use and drastically reduce the amount of TLS functions in
contemporary TLS APIs

4. Facilitate the adoption of the SSA by other programming languages

6/17

OpenSSL Analysis

* The authors explore what functionality should be present in the
SSA and how to distill the 504 TLS-related OpenSSL symbols to
the handful provided by the POSIX socket interface

* They collected the source code for all standard Ubuntu
repository software packages that directly depend on libssl

v'410 packages using C/C++

* Immediately they found that 170 of the 504 API symbols are not
used by any application in their analysis

7117

OpenSSL Analysis

* Breakdown of OpenSSL’s libssl symbols

Category Symbols Uses
TLS Functionality
Version selection 29 1306
Cipher suite selection 39 1467
Extension management 68 597
Certificate/Key management 73 2083
Certificate/Key validation 51 3164
Session management 61 1155
Configuration 19 1337
Other
Allocation 33 6087
Connection management 41 5228
Miscellaneous 64 1468
Instrumentation 26 232

8/17

The Secure Socket APl (SSA)

« Under the Secure Socket API, all TLS functionality is built
directly into the POSIX socket API

« Administrators set global policy (and for individual applications)

v'TLS Version, Cipher Suites, Certificate Validation, Enabled Extensions,
Session Caching, Default Paths for keys and certificates

v'Developers can increase security, but cannot decrease it

9/17

The Secure Socket APl (SSA)

POSIX Function

General Behavior

Behavior under IPPROTO_TLS

socket

connect

bind

listen

accept

Create an endpoint for communication ufi-
lizing the given protocol family, type, and
optionally a specific protocol.

Connect the socket to the address specified
by the addr parameter for stream protocols,
or indicate a destination address for subse-
quent transmissions for datagram protocols.

Bind the socket to a given local address.
Mark a connection-based socket (e.g.,
SOCK_STREAM) as a passive socket to be
used for accepting incoming connections.

Retrieve connection request from the pend-
ing connections of a listening socket and
create a new socket descriptor for interac-
tions with the remote endpoint.

Create an endpoint for TLS communica-
tion, which utilizes TCP for its trans-
port protocol if the type parameter is
SOCK_STREAM and uses DTLS over UDP if
type is SOCK_DGRAM.

Perform a connection for the underlying
transport protocol if applicable (e.g., TCP
handshake), and perform the TLS hand-
shake (client-side) with the specified re-
mote address. Certificate and hostname val-
idation is performed according to adminis-
trator and as optionally specified by the ap-
plication via setsockopt.

No TLS-specific behavior.
No TLS-specific behavior.

Retrieve a connection request from the
pending connections, perform the TLS
handshake (server-side) with the remote
endpoint, and create a new descriptor for in-
teractions with the remote endpoint.

Uzsa hostname address family 7
struct sockaddr_he=st addr:
addr .sin_family = AF_HOSTNAME;
strcpy (addr.sin_addr.name, "www.example.com");
addr .sin_pert = htens (443);

f#+ RHegqueszt a TLE =zocket (insztead of TCP) =
fd = sucket(PF INET, SOCE_STREAM, IPPRDTD TLS}
TLS Handshalk (verification done for us)

connact (fd, &addr. gizeof (addrd);

f#+ Hardcoded HTTP request #

char http_ raquast[] = "GET f HTTP/1.1%r\n..."
char http_response [2048];

mamsat(http rasponse , 0, 2048);

f ynd HTTP request encrypted with TLS =/
sand{fd http_request, sizanf(http request)-l o) ;
= l\.l\.-\.l\._' = .-.l.".I .-_rl.l.'.. I'espolsa »
racu{fd http_raspansa, 2047, 0);
* Shutdown TLS connection and socket

clnsa{fd)J

Print response
printf(“ﬁeceived \n¥=s", http_response);
return 0;

< Client example >

10/17

The Secure Socket APl (SSA)

POSIX Function

General Behavior

Behavior under IPPROTO_TLS

send, sendto, etc.

recv, recvirom, etc.

shutdown

close

select, poll, etc.

setsockopt

getsockopt

Transmit data to a remote endpoint.

Receive data from a remote endpoint.

Perform full or partial tear-down of connec-
tion, based on the how parameter.

Close a socket, perform connection tear-
down if there are no remaining references
to socket.

Wait for one or more descriptors to become
ready for I/O operations.

Manipulate options associated with a
socket, assigning values to specific options
for multiple protocol levels of the OSI
stack.

Retrieve a value associated with an option
from a socket, specified by the 1level and
option_name parameters.

Encrypt and transmit data to a remote end-
point.

Receive and decrypt data from a remote
endpoint.

Send a TLS close notify.

Close a socket, send a TLS close notify, and
tear-down connection, if applicable.

No TLS-specific behavior.

Manipulate TLS specific options when the
level parameter is IPPROTO_TLS, such as
specifying a certificate or private key to as-
sociate with the socket. Other 1evel values
interact with the socket according to their
existing semantics.

For a level value of IPPROTO_TLS, re-
trieve TLS-specific option values. Other
level values interact with the socket ac-
cording to their existing semantics.

struct sockaddr_in addr;
addr .sin_family = AF_INET;

addr 2in_addr.s_addr = INADDR_ANY:
wan to liste on port 443 =/

addr sin purt = htons{443)

standard IPv4 address =/

'#* Request a TLE szocket (instead of TCP) =/
fd = socket (PF_INET, SOCE_STREAM, IPPROTO_TLS):
‘# Bind to address and port =/

bind(fd, &addr, sizaof{addr));

(' Azssign certificate chain =*/
setsockopt (fd, IPPRDTD_TLS,
TLS_CERTIFICATE_CHAIN,
CERT_FILE, sizeof (CERT_FILE));
Assign private key =/
setsockopt{i’d IPPROTO_TLS, TLS_PRIVATE_KEY,
\ KEEY _FILE, sizeof (KEY_FILE)):

listen(fd, SOMAXCONN);

while (1) {
struct sockaddr_storage addr;
socklen_t addr_len = 51zeof{addr)
! * *-.L new client and de TLS handshak
using ert and keys provided =/
int c fd = accept(fd, kaddr, kaddr_len);
acaive decr ..'.-'.'| l-_'_'un__'. w
BUFFER_SIZE, 0);
response) ;
response

BUFFER_SIZE, 0);

recv(c_fd, request,
handle_reg{request,
/* Send encrypted
send(c_fd, response,
close(c_£d);

< Server example > 11/17

The Secure Socket APl (SSA)

« Sample of socket options at the IPPROTO_TLS level
« TLS_ REMOTE_HOSTNAME
e TLS_ HOSTNAME
« TLS_CERTIFICATE_CHAIN
« TLS_PRIVATE KEY
- TLS_TRUSTED PEER_CERTIFICATES
« TLS_SESSION TTL
« TLS_DISABLE_CIPHER
« TLS_PEER_IDENTITY

12/17

The Secure Socket APl (SSA)

« Summary of code changes required to port a sample of
applications to use the SSA

LOC LOC Famihar Time
Program Modified removed withcode — Taken
wgel 15 1.020 No 3 Hrs.
lighttpd B8 2,063 No 3 Hrs.
ws-event 3 0 Yes 5 Min.

netcat 5 0 No 10 Min.

13/17

Implementation

 Data flow for SSA usage by network applications

[Network Application)
I

POSIX Socket API)
I

Userspace

)

« The application shown is using the TLS (which uses TCP
N Internally for connection-based SOCK STREAM sockets)

Network Subsystem + TLS: a loadable Linux kernel module

Tfp UDP|[RAW -J « Encryption daemon: security library role

Systern Call Boundary
]

Kernel
R

¥

Encryption Daemon
Security Library

Userspace

Admin Config

1'- L
Network

14 /17

Implementation

» Coercing Existing Applications
* The authors explored the ability to dynamically coerce TLS applications
using security libraries to use the SSA instead

* They supply replacement OpenSSL functions through a shared library
for dynamically linked applications to override normal behavior

* In the experimentation with this tool, they successfully forced wget, irssi,
curl, and lighttpd to use the SSA for TLS dynamically, bringing the TLS
behavior of these applications under admin control.

15/17

Discussion

* Benefits

« Because the SSA design moves all TLS functionality to a centralized
service, administrators gain the ability to configure TLS behavior on a
system-wide level, and tailor settings of individual applications to their

specific needs

* By implementing the SSA with a kernel module, developers who wish
to use it do not have to link with any additional userspace libraries

* Alternative Implementation
« User space only: wrapping the native socket API
« Kernel only: some performance gains in TLS are also possible

16/17

Conclusion

* The authors explored TLS library simplification and furthering
administrator control through the POSIX socket API
v'Developer’s typical mistakes - simple APl & admin control

* They showed that existing code could be changed to use SSA
without much effort

e The POSIX socket API Is a natural fit for a TLS API

17/17

