
1 / 17

The Secure Socket API:
TLS as an Operating System Service

Published in: 27th USENIX Security Symposium, 2018

Summarized by

Sangwon Lim (sangwonlim@snu.ac.kr)

2022-10-31

mailto:sangwonlim@snu.ac.kr


2 / 17

Contents

• Introduction

• Motivation

• Secure Socket API (SSA) Design Goals

• OpenSSL Analysis

• The Secure Socket API (SSA)

• Implementation

• Discussion

• Conclusion



3 / 17

Introduction 

• Transport Layer Security (TLS) is the most popular security 
protocol used on the Internet

• Because of the complex security APIs, developers make 
frequent mistakes

• The authors present the Secure Socket API (SSA), a TLS API for 
applications designed to work within the confines of the existing 
standard POSIX socket API already familiar to developers



4 / 17

Introduction 

• The Contributions of this paper
• An analysis of contemporary use of TLS by 410 Linux packages and a 

qualitative breakdown of OpenSSL’s 504 API endpoints for TLS 
functionality

• A description of the Secure Socket API and how it fits within the 
existing POSIX socket API, with descriptions of the relevant functions, 
constants, and administrator controls

• A description of and source code for a prototype implementation of the 
Secure Socket API

• A description of and source code for a tool that dynamically ports 
existing OpenSSL-using applications to use the SSA without requiring 
modification



5 / 17

Motivation

• TLS use by applications is mired by complicated APIs and 
developer mistakes
➔ Developers lack a common, usable security API

• A related problem is that the reliance on application developers 
to implement security inhibits the control administrators have 
over their own machines
➔ Administrators lack control over secure connections



6 / 17

Secure Socket API (SSA) Design Goals

• Both easy to use for developers and grants a high degree of 
control to system administrators

1. Enable developers to use TLS through the existing set of functions 
provided by the POSIX socket API

2. Support direct administrator control over the parameters and settings 
for TLS connections made by the SSA

3. Export a minimal set of TLS options to applications that allow general 
TLS use and drastically reduce the amount of TLS functions in 
contemporary TLS APIs

4. Facilitate the adoption of the SSA by other programming languages



7 / 17

OpenSSL Analysis

• The authors explore what functionality should be present in the 
SSA and how to distill the 504 TLS-related OpenSSL symbols to 
the handful provided by the POSIX socket interface

• They collected the source code for all standard Ubuntu 
repository software packages that directly depend on libssl
✓410 packages using C/C++ 

• Immediately they found that 170 of the 504 API symbols are not 
used by any application in their analysis



8 / 17

OpenSSL Analysis

• Breakdown of OpenSSL’s libssl symbols



9 / 17

The Secure Socket API (SSA)

• Under the Secure Socket API, all TLS functionality is built 
directly into the POSIX socket API

• Administrators set global policy (and for individual applications)
✓TLS Version, Cipher Suites, Certificate Validation, Enabled Extensions, 

Session Caching, Default Paths for keys and certificates

✓Developers can increase security, but cannot decrease it



10 / 17

The Secure Socket API (SSA)

< Client example >



11 / 17

The Secure Socket API (SSA)

< Server example >



12 / 17

The Secure Socket API (SSA)

• Sample of socket options at the IPPROTO_TLS level
• TLS_REMOTE_HOSTNAME 

• TLS_HOSTNAME 

• TLS_CERTIFICATE_CHAIN 

• TLS_PRIVATE KEY 

• TLS_TRUSTED_PEER_CERTIFICATES 

• TLS_SESSION TTL

• TLS_DISABLE_CIPHER 

• TLS_PEER_IDENTITY



13 / 17

The Secure Socket API (SSA)

• Summary of code changes required to port a sample of 
applications to use the SSA



14 / 17

Implementation

• Data flow for SSA usage by network applications

• The application shown is using the TLS (which uses TCP 

internally for connection-based SOCK STREAM sockets)

• TLS: a loadable Linux kernel module

• Encryption daemon: security library role



15 / 17

Implementation

• Coercing Existing Applications
• The authors explored the ability to dynamically coerce TLS applications 

using security libraries to use the SSA instead

• They supply replacement OpenSSL functions through a shared library 
for dynamically linked applications to override normal behavior

• In the experimentation with this tool, they successfully forced wget, irssi, 
curl, and lighttpd to use the SSA for TLS dynamically, bringing the TLS 
behavior of these applications under admin control.



16 / 17

Discussion

• Benefits
• Because the SSA design moves all TLS functionality to a centralized 

service, administrators gain the ability to configure TLS behavior on a 
system-wide level, and tailor settings of individual applications to their 
specific needs

• By implementing the SSA with a kernel module, developers who wish 
to use it do not have to link with any additional userspace libraries

• Alternative Implementation
• User space only: wrapping the native socket API

• Kernel only: some performance gains in TLS are also possible



17 / 17

Conclusion

• The authors explored TLS library simplification and furthering 
administrator control through the POSIX socket API
✓Developer’s typical mistakes → simple API & admin control

• They showed that existing code could be changed to use SSA 
without much effort

• The POSIX socket API is a natural fit for a TLS API


