usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

The Secure Socket API: TLS as an
Operating System Service

Mark O’Neill, Scott Heidbrink, Jordan Whitehead, Tanner Perdue, Luke Dickinson,
Torstein Collett, Nick Bonner, Kent Seamons, and Daniel Zappala, Brigham Young University

https://www.usenix.org/conference/usenixsecurity18/presentation/oneill

This paper is included in the Proceedings of the

27th USENIX Security Symposium.
August 15-17, 2018 - Baltimore, MD, USA
ISBN 978-1-939133-04-5

Open access to the Proceedings of the
27th USENIX Security Symposium
is sponsored by USENIX.

The Secure Socket API: TLS as an Operating System Service

Mark O’Neill

Kent Seamons

Scott Heidbrink Jordan Whitehead Tanner Perdue
Luke Dickinson Torstein Collett
Daniel Zappala

Nick Bonner

Brigham Young University

mto@byu.edu, sheidbri@byu.edu, jaw @byu.edu, tanner_perdue @byu.edu

luke @isrl.byu.edu, torstein.collett@byu.edu, jbonner6 @byu.edu

seamons @cs.byu.edu, zappala@cs.byu.edu

Abstract

SSL/TLS libraries are notoriously hard for developers to
use, leaving system administrators at the mercy of buggy
and vulnerable applications. We explore the use of the
standard POSIX socket API as a vehicle for a simpli-
fied TLS API, while also giving administrators the abil-
ity to control applications and tailor TLS configuration
to their needs. We first assess OpenSSL and its uses in
open source software, recommending how this function-
ality should be accommodated within the POSIX API.
We then propose the Secure Socket API (SSA), a min-
imalist TLS API built using existing network functions
and find that it can be employed by existing network
applications by modifications requiring as little as one
line of code. We next describe a prototype SSA imple-
mentation that leverages network system calls to provide
privilege separation and support for other programming
languages. We end with a discussion of the benefits and
limitations of the SSA and our accompanying implemen-
tation, noting avenues for future work.

1 Introduction

Transport Layer Security (TLS!) is the most popular
security protocol used on the Internet. Proper use of
TLS allows two network applications to establish a se-
cure communication channel between them. However,
improper use can result in vulnerabilities to various at-
tacks. Unfortunately, popular security libraries, such as
OpenSSL and GnuTLS, while feature-rich and widely-
used, have long been plagued by programmer misuse.
The complexity and design of these libraries can make
them hard to use correctly for application developers and
even security experts. For example, Georgiev et al. find
that the “terrible design of [security library] APIs” is the
root cause of authentication vulnerabilities [11].

1Unless otherwise specified, we use TLS to indicate TLS and SSL

Significant efforts to catalog developer mistakes and
the complexities of modern security APIs have been pub-
lished in recent years [8, 12, 23, 4, 19]. As a result,
projects have emerged that reduce the size of security
APIs [20], enhance library security [1], and perform cer-
tificate validation checks on behalf of vulnerable applica-
tions [3, 18, 9, 5]. A common conclusion of these works
is that TLS libraries need to be redesigned to be simpler
for developers to use securely.

In this work we present the Secure Socket API (SSA),
a TLS API for applications designed to work within the
confines of the existing standard POSIX socket API al-
ready familiar to network programmers. We extend the
POSIX socket API in a natural way, providing backwards
compatibility with the existing POSIX socket interface.
This effort required an analysis of current security library
use to guide our efforts, and careful interaction with ker-
nel network code to not introduce undue performance
overhead in our implementation. The SSA enables devel-
opers to quickly build TLS support into their applications
and administrators to easily control how applications use
TLS on their machines. We demonstrate our prototype
SSA implementation across a variety of use cases and
also show how it can be trivially integrated into existing
programming languages.

Our contributions are as follows:

e An analysis of contemporary use of TLS by 410
Linux packages and a qualitative breakdown of
OpenSSL’s 504 API endpoints for TLS functional-
ity. These analyses are accompanied by design rec-
ommendations for the Secure Socket API, and may
also serve as a guide for developers of security li-
braries to improve their own APIs.

e A description of the Secure Socket API and how it
fits within the existing POSIX socket API, with de-
scriptions of the relevant functions, constants, and
administrator controls. We also provide example
usages and experiences creating new TLS applica-

USENIX Association

27th USENIX Security Symposium 799

tions using the SSA that require less than ten lines
of code and as little as one. We modify existing ap-
plications to use the SSA, resulting in the removal
of thousands of lines of existing code.

e A description of and source code for a prototype
implementation of the Secure Socket API. We also
provide a discussion of benefits and features of this
implementation, and demonstrate the ease of adding
SSA support to other languages.

e A description of and source code for a tool that
dynamically ports existing OpenSSL-using applica-
tions to use the SSA without requiring modification.

Previous findings have motivated the work for simpler
TLS APIs and better administrator controls. This work
explores utilization of the POSIX socket API as a possi-
ble avenue to address these needs.

We also discuss some finer points regarding the im-
plementation and use of the SSA. We outline the ben-
efits and drawbacks of our chosen implementation, and
do the same for some suggested alternative implemen-
tations. For users of the SSA, we discuss the avenues
for SSA configuration and its deployment with respect to
different platforms and skill levels of users.

2 Motivation

TLS use by applications is mired by complicated APIs
and developer mistakes, a problem that has been well
documented. The 1ibssl component of the OpenSSL
1.0 library alone exports 504 functions and macros for
use by TLS-implementing applications. This problem is
likely to persist, as the unreleased OpenSSL 1.1.1 has in-
creased this number substantially. This and other TLS
APIs have been criticized for their complexity [11, 12]
and, anecdotally, our own explorations find many func-
tions within 1ibssl that have non-intuitive semantics,
confusing names, or little-to-no use in applications. A
body of work has cataloged developer mistakes when
using these libraries to validate certificates, resulting in
man-in-the-middle vulnerabilities [4, 11, 8].

A related problem is that the reliance on application
developers to implement security inhibits the control ad-
ministrators have over their own machines. For exam-
ple, an administrator cannot currently dictate what ver-
sion of TLS is used by applications she installs, what
cipher suites and key sizes are used, or even whether ap-
plications use TLS at all. This coupling of application
functionality with security policy can make otherwise de-
sirable applications unadoptable by administrators with
incompatible security requirements. This problem is ex-
acerbated when security flaws are discovered in applica-
tions and administrators must wait for security patches

from developers, which may not ever be provided due to
project shutdown, financial incentive, or other reasons.
Thus TLS connection security is at the mercy of appli-
cation developers, despite their inability to properly use
security APIs and unfamiliarity with the specific secu-
rity needs of system administrators. One illustration of
the demand for administrator control is the Redhat-led
effort to create a system-wide “CryptoPolicy” configu-
ration file [15]. Through custom changes in OpenSSL
and GNUTLS, this configuration file allows developers
to defer some security settings to administrators.

The synthesis of these two problem spaces is that de-
velopers lack a common, usable security API and admin-
istrators lack control over secure connections. In this pa-
per we explore a solution space to this problem through
the POSIX socket API and operating system control. We
seek to improve on prior endeavors by reducing the TLS
API to a handful of functions that are already offered to
and used by network programmers, effectively making
the TLS API itself nearly transparent. This drastically
reduces the code required to use TLS. We also explore
supporting programming languages beyond C/C++ with
a singular API implementation. Developers merely se-
lect TLS as if it were a built-in protocol such as TCP or
UDP. Moreover, this enables administrators to configure
TLS policies system-wide, while allowing developers to
use options to add configuration and request stricter se-
curity policies.

Shifting control of TLS to the operating system and
administrators may be seen as controversial. However,
most operating systems already offer critical services
to applications to reduce code redundancy and to en-
sure that the services are run in a manner that does not
threaten system stability or security. For example, ap-
plication developers on Linux and Windows are not ex-
pected to write their own TCP implementation for net-
working applications or to implement their own file sys-
tem functionality when writing to a file. Moreover, oper-
ating systems and system administrators have been found
to focus more attention on security matters [17]. Thus
we believe establishing operating system and adminis-
trator control of TLS and related security policies is in
line with precedent and best practice.

3 SSA Design Goals

Our primary goal in developing the SSA is to find a so-
lution that is both easy to use for developers and grants
a high degree of control to system administrators. Since
C/C++ developers on Linux and other Unix-like systems
already use the POSIX socket API to create applications
that access the network, this API represents a compelling
path for simplification of TLS APIs. Other languages
use this API directly or indirectly, either through imple-

800 27th USENIX Security Symposium

USENIX Association

mentation of socket system calls or by wrapping another
implementation. If TLS usage can be mapped to exist-
ing POSIX API syntax and semantics, then that map-
ping represents the most simple TLS API possible, in the
sense that other approaches would either need to wrap or
redefine the standard networking API.

Under the POSIX socket API, developers specify their
desired protocol using the last two parameters of the
socket function, which specify the type of protocol
(e.g., SOCK_DGRAM, SOCK_STREAM), and optionally the
protocol itself (e.g., IPPROTO_TCP), respectively. Cor-
responding network operations such as connect, send,
and recv then use the selected protocol in a manner
transparent to the developer. We explore the possibility
of fitting TLS within this paradigm. Ideally, a simplified
TLS API designed around the POSIX socket API would
merely add TLS as a new parameter value for the pro-
tocol (IPPROTO_TLS). Subsequent calls to POSIX socket
functions such as connect, send, and recv would then
perform the TLS handshake, encrypt and transmit data,
and receive and decrypt data respectively, based on the
TLS protocol. Our design goals are as follows:

1. Enable developers to use TLS through the existing
set of functions provided by the POSIX socket API,
without adding any new functions or changing of
function signatures. Modifications to the API are
acceptable only in the form of new values for ex-
isting parameters. This enables us to provide an
API that is already well-known to network program-
mers and implemented by many existing program-
ming languages, which simplifies both automatic and
manual porting to the SSA.

2. Support direct administrator control over the param-
eters and settings for TLS connections made by the
SSA. Applications should be able to increase, but not
decrease, the security preferred by the administrator.

3. Export a minimal set of TLS options to applications
that allow general TLS use and drastically reduce the
amount of TLS functions in contemporary TLS APIs.

4. Facilitate the adoption of the SSA by other program-
ming languages, easing the security burden on lan-
guage implementations and providing broader secu-
rity control to administrators.

4 OpenSSL Analysis

In the pursuit of our goals, we first gather design recom-
mendations and assess the feasibility of our approach by
analyzing the OpenSSL API and how it is used by pop-
ular software packages. We explore what functionality
should be present in the SSA and how to distill the 504
TLS-related OpenSSL symbols (e.g., functions, macros)
to the handful provided by the POSIX socket interface.
We limit our analysis to the features exported by 1ibssl,

the component of OpenSSL responsible for TLS func-
tionality. With few exceptions, 1ibcrypto, which sup-
ports generic cryptographic activities, is out of the scope
of our study. GnuTLS and other libraries could also have
been explored, but we choose OpenSSL due to its pop-
ularity and expansive feature set, leaving the assessment
of other libraries to future work. For the results outlined,
we analyzed OpenSSL 1.0.2 and software packages from
Ubuntu 16.04. A full listing of our methods and results
for our analysis of 1ibssl is located at owntrust.org.

We collected the source code for all standard Ubuntu
repository software packages that directly depend on
libssl. We then filtered the resulting 882 packages for
those using C/C++, leaving 410 packages for our anal-
ysis of direct use of 1ibssl. Of these, 276 have TLS
server functionality and 340 have TLS client functional-
ity (248 have both). Note that packages using other lan-
guages may depend on OpenSSL by utilizing one of the
packages in our analysis. We analyzed the source code
of each package in our derived set in the context of its
use of the symbols exported by 1ibssl.

To obtain a comprehensive list of functionality offered
by 1ibssl, we extracted the symbols (e.g., functions,
constants) it exports to applications. We also augmented
this list of 323 symbols by recursively adding prepro-
cessor macros that use already-identified symbols. This
resulted in a cumulative list of 504 unique API symbols
that developers can use when interfacing with OpenSSL’s
libssl. We then cataloged the behavior and uses of
each of these symbols using descriptions in the official
API documentation, in cases where such entries existed.
Manual inspection of source code and unofficial third-
party documentations were used to catalog symbols not
present in the official documentation. We categorized
each of the symbols into the groups shown in Table 1.
Our selection of packages made a total of 24,124 calls to
the 1ibssl APL

The resulting categories are of two types: those that
are used for specifying behavior of the TLS protocol it-
self (e.g., symbols that indicate which TLS version to
use, or how to validate a certificate), and those that relate
specifically to OpenSSL’s implementation (e.g., symbols
used to allocate and free OpenSSL structures, options to
turn on bug workarounds). For each category, we em-
ployed both automated static code analysis techniques,
using Joern [26], and manual inspection to understand
the use cases for each of its symbols.

Immediately we found that 170 of the 504 API sym-
bols are not used by any application in our analysis. De-
spite this, we manually inspected every symbol in the
API to determine whether they offered an important use
case for the SSA. The highlights of our findings for select
categories are as follows.

USENIX Association

27th USENIX Security Symposium 801

Category Symbols Uses
TLS Functionality
Version selection 29 1306
Cipher suite selection 39 1467
Extension management 68 597
Certificate/Key management 73 2083
Certificate/Key validation 51 3164
Session management 61 1155
Configuration 19 1337
Other
Allocation 33 6087
Connection management 41 5228
Miscellaneous 64 1468
Instrumentation 26 232

Table 1: Breakdown of OpenSSL’s 1ibss1 symbols.

4.1 Version Selection

OpenSSL allows developers to specify the versions of
TLS which their connections should use, and retrieve this
information. Of calls that set a version, 459 (54%) are
functions prefixed with SSLv23, which default to the lat-
est TLS version supported by OpenSSL, but also allow
fallback to supported previous versions. The OpenSSL
documentation indicates that these functions are pre-
ferred [10]. Of the 388 (68%) calls that indicate a sin-
gular TLS version to use, only 60 (15%) use the latest
version of TLS (1.2), and 83 (21%) specify the use of the
vulnerable SSL 3.0. Another 190 (49%) directly specify
the use of TLS 1.0, through the use of TLSv1 method
settings. Our inspection of source code comments sur-
rounding these uses suggest that many developers er-
roneously believe that it selects the latest TLS version.
We also found that many uses of version selection func-
tions are determined by compile-time settings supplied
by package maintainers and system administrators.

In aggregate, these version selection behaviors suggest
that overwhelmingly developers want the system to se-
lect the version for them, directly or indirectly, or are
adopting lower versions erroneously. We therefore rec-
ommend that the SSA use the latest uncompromised TLS
versions by default, and that deviation from this be con-
trolled by the system administrator.

4.2 Cipher Suite Selection

In our dataset, 221 (54%) packages contain code that
sets the ciphers used by OpenSSL directly, using the
*x_set_cipher_list functions. Due to limitations in
how Joern performs static analysis, we are not able to
determine all of the parameter values provided to these

functions. However, a sample of applications with hard-
coded ciphers suggests some bad practice. Of note are
the uses of eNULL (5), NULL (10), COMPLEMENTOFALL
(3), RC4 (2), and MD5 (1), all of which enable vulnerable
ciphers or enable the null cipher, which offers no encryp-
tion at all. We manually analyzed an additional sample
of packages and found that many adopt default settings
or retrieve their cipher suite lists dynamically from envi-
ronment variables and configuration files.

Our analysis indicates that, like with version selection,
developers want to let the system select cipher suites for
them, and that those who choose to hardcode behaviors
often make mistakes. We thus recommend that allowed
cipher suites be set by the system administrator. The SSA
could allow applications to further limit cipher suites, but
should not let them request suites that are not allowed by
the administrator.

4.3 Extension Management

OpenSSL exports explicit control of ten TLS extensions
through functions in the extension management cate-
gory. Only two extensions are used somewhat regularly —
Server Name Indication (SNI), in 77 (19%) applications,
and Next Protocol Negotiation (NPN) and its successor
Application-Layer Protocol Negotiation (ALPN), in 60
(15%) applications. Five other extensions—including On-
line Certificate Status Protocol (OCSP)- are used much
less often, and Heartbeats, PRF, Serverinfo, and Sup-
ported Curves are not used at all.

Our observation is that many extensions should be
configured by the system administrator. For example,
SNI and OCSP could be enabled system-wide so that all
applications use them. In addition, there are relatively
few cases where developers need to supply configuration
for an extension, such as a hostname with SNI or a list
of protocols with ALPN. We therefore recommend that
the SSA implement extensions on behalf of the applica-
tion and expose an interface to developers for supplying
configuration information.

4.4 Certificate/Key Management

Of the 73 API functions used for managing keys and cer-
tificates, 39 (54%) are unused. Another 17 (23%) are
used by less than five software packages. The remaining
functions are used heavily, with a combined call count of
2083 from hundreds of distinct packages. Most of these
are used to either specify a certificate or private key for
the TLS connection. However, one is used to verify that a
given private key corresponds to a particular certificate,
and two are used to provide decryption passphrases to
unlock private keys.

802 27th USENIX Security Symposium

USENIX Association

Given that most functions in this category are unused,
and that all but three of those that are used are for spec-
ifying the locations of certificates and private keys, we
recommend the SSA have simplified options for supply-
ing private key and certificate data. These options should
take both chains and leaf certificates as input, in keep-
ing with recommendations in the OpenSSL documenta-
tion. Additionally, the SSA can check whether a supplied
key is valid for supplied certificates on behalf of the de-
veloper, removing the need for developers to check this
themselves, reporting relevant errors through return val-
ues of key assignment functionality.

4.5 Certificate Validation

Under TLS, failure to properly validate a certificate pre-
sented by the other endpoint undermines authentication
guarantees. Previous research has shown that develop-
ers often make mistakes with validation [11, 4, 8]. Our
analysis indicates that the certificate validation functions
in OpenSSL are heavily used, but confirms that develop-
ers continue to make mistakes. We found that 6 pack-
ages disable validation entirely and specify no callback
for custom validation, indicating the presence of a man-
in-the-middle vulnerability. We have notified the rele-
vant developers of these problems. A total of 7 pack-
ages use SSL_get_verify result, but neglect to en-
sure SSL_get_peer_certificate returns a valid cer-
tificate. Neglecting this call is documented as a bug in
the OpenSSL documentation, because receiving no cer-
tificate results in a success return value.

Recent work has described the benefits of handling
verification in an application-independent manner and
under the control of administrator preferences [18, 3].
Given this work and the poor track record of applica-
tions, we recommend that validation be performed by
the SSA, which should implement administrator prefer-
ences and provide secure defaults. This includes the em-
ploy of strengthening technologies such as OSCP [22],
CRLs [6], etc. We make this recommendation with one
caveat: if an application would like to validate a certifi-
cate based on a hard-coded set or its own root store, then
it can supply a set of trusted certificates to the SSA.

4.6 Session Management

Performing the TLS handshake requires multiple round
trips, which can be relatively expensive for latency-
sensitive applications. Session caching alleviates this by
storing TLS session data for resumption during an ab-
breviated handshake. Most of the analyzed packages,
299 (73%), do not make any changes to the default ses-
sion caching mechanisms of OpenSSL. Within the other
27%, the most common modification is to simply turn

caching off entirely. The remaining uses disable indi-
vidual caching features or are calls to explicitly retain
default settings. There are 31 packages that implement
custom session cache handling. Manual inspection of
these packages found this was used for logging and to
pass session data to other processes, presumably to sup-
port load balancing for servers.

We recommend that session caching be implemented
by the SSA, relieving developers of this burden, with
options for developers to disable caching and customize
session TTLs. Because it operates as an OS service, the
SSA is uniquely positioned to allow sharing of session
state between processes of the same application. This
could be further adapted to support session sharing be-
tween instances of an application on different machines.

4.7 Configuration

OpenSSL provides configuration of various options that
control the behavior of TLS connections, along with
modes that allow fine-tuning the TLS implementation,
such as indicating when internal buffers should be re-
leased or whether to automatically perform renegotia-
tion. Most calls in this category, 830 (62%), are used to
adjust options. The four most-used options disable vul-
nerable TLS features and older versions (e.g., compres-
sion, SSLv2, SSLv3), and enable all bug workarounds
(for interoperability with other TLS implementations).
An additional 337 (25%) calls in this category set var-
ious modes. Of these, 138 (41%) set a flag that makes
I/O operations on a socket block if the handshake has
not yet completed, 189 (56%) set flags that modify the
SSL_write function to behave more like write, and 47
(14%) use a flag that reduces the memory footprint of
idle TLS connections. Also present are 32 calls (2%) to
functions that change how many bytes OpenSSL reads
during receive operations. Through manual inspection
we find that many of these configurations are set by com-
pilation parameters, suggesting that many developers are
leaving these decisions to administrators already.

Given that the uses of this category are primarily bug
workarounds and restricting the use of outdated proto-
cols, and that many of these are already set through
compilation flags, we recommend leaving such config-
urations to the administrator. Software updates can ap-
ply bug workarounds and disable vulnerable protocols
in one location, deploying them to all applications au-
tomatically. Modes and other configuration settings in
this category tend to control subtleties of read and write
operations. Under the SSA, I/O semantics are largely de-
termined by the existing POSIX socket standard, so we
ignore them.

USENIX Association

27th USENIX Security Symposium 803

4.8 Non-TLS Protocol Specific Functions

The remaining categories consist of functions not ap-
plicable to the SSA or those trivially mapped to it.
The allocation category contains functions such as
SSL_library-init and SSL_free, whose existence is
obviated by the existence of the SSA because all rele-
vant memory allocation and freeing is performed as part
of calls such as socket and close. The connection
management category contains functions that perform
connection and I/O operations on sockets. All of these
have direct counterparts within the POSIX socket API,
or have combinations of symbols that emulate the be-
havior, such as SSL_connect (connect), and SSL_Peek
(recv with MSG_PEEK flag). Another example is that
of SSL_get_error, which when called returns a value
similar to errno. These functions should therefore
be mapped to their POSIX counterparts for the SSA.
The instrumentation and miscellaneous categories con-
tain functionality that monitors raw TLS messages, ex-
tracts information from internal data structures, is sched-
uled for deprecation, etc.

5 The Secure Socket API

We designed the SSA using lessons learned from our
study of 1ibssl and its usage. The SSA is responsible
for automatic management of every TLS category dis-
cussed in the previous section, including automatic se-
lection of TLS versions, cipher suites, and extensions. It
also performs automatic session management and auto-
matic validation of certificates. By using standard net-
work send and receive functions, the SSA automatically
and transparently performs encryption and decryption
of data for applications, passing relevant errors through
errno. All of these are subject to a system configura-
tion policy with secure defaults, with customization abil-
ities exported to system administrators and developers.
Administrators set global policy (and can set policy for
individual applications), while developers can choose to
further restrict security. Developers can increase secu-
rity, but cannot decrease it.

5.1 Usage

Under the Secure Socket API, all TLS functionality is
built directly into the POSIX socket API. The POSIX
socket API was derived from Berkeley sockets and is
meant to be portable and extensible, supporting a vari-
ety of network communication protocols. As a result,
TLS fits nicely within this framework, with support for
all salient operations integrated into existing functions
without the need for additional parameters, pursuant to
our first design goal. When creating a socket, developers

select TLS by specifying the protocol as IPPROTO_TLS.
Data is sent and received through the socket using stan-
dard functions such as send and recv, which will be
encrypted and decrypted using TLS, just as network
programmers expect their data to be placed inside and
removed from TCP segments under IPPROTO_TCP. To
transparently employ TLS in this fashion, other functions
of the POSIX socket API have specialized TLS behav-
iors under IPPROTP_TLS as well. Table 2 contains a brief
description of the POSIX socket API functions with the
specific behaviors they adopt under TLS.

To offer concrete examples of SSA utilization, we also
present code for a simple client and server in Figure 1.
Both the client and the server create a socket with the
IPPROTO_TLS protocol. The client uses the standard
connect function to connect to the remote host, also em-
ploying the AF_HOSTNAME address family to indicate to
which hostname it wishes to connect. The client sends
a plaintext HTTP request to the selected server, which
is then encrypted by the SSA before transmission. The
response received is also decrypted by the SSA before
placing it into the buffer provided to recv.

In the server case, the application calls bind to give
itself a source address of 0.0.0.0 (INADDR_ANY) on port
443, Before it calls listen, it uses two calls to
setsockopt to provide the location of its private key
and certificate chain file to be used for authenticating
itself to clients during the TLS handshake. After the
listening descriptor is established, the server then iter-
atively handles requests from incoming client connec-
tions, and the SSA performs a handshake with clients
transparently using the provided options. As with the
client case, calls to send and recv have their data en-
crypted and decrypted in accordance with the TLS ses-
sion, before they are delivered to relevant destinations.

5.2 Administrator Options

Our second design goal is to enable administrator control
over TLS parameters set by the SSA. Administrators gain
this control through a protected configuration file, which
exports the following options:

e TLS Version: Select which TLS versions to enable,
in order of preference (default: TLS 1.2, TLS 1.1,
TLS 1.0).

e Cipher Suites: Select which cipher suites to enable,
in order of preference (vulnerable ciphers are dis-
abled by default).

o Certificate Validation: Select active certificate val-
idation mechanisms and strengthening technologies.
We cover this in more detail at the end of this section.

e Honor Application Validation: Specify whether to
honor validation against root stores supplied by ap-
plications (default: true).

804 27th USENIX Security Symposium

USENIX Association

POSIX Function

General Behavior

Behavior under IPPROTO_TLS

socket

connect

bind

listen

accept

send, sendto, etc.

recv, recvfrom, etc.

shutdown

close

select, poll, etc.

setsockopt

getsockopt

Create an endpoint for communication uti-
lizing the given protocol family, type, and
optionally a specific protocol.

Connect the socket to the address specified
by the addr parameter for stream protocols,
or indicate a destination address for subse-
quent transmissions for datagram protocols.

Bind the socket to a given local address.
Mark a connection-based socket (e.g.,
SOCK_STREAM) as a passive socket to be
used for accepting incoming connections.

Retrieve connection request from the pend-
ing connections of a listening socket and
create a new socket descriptor for interac-
tions with the remote endpoint.

Transmit data to a remote endpoint.

Receive data from a remote endpoint.

Perform full or partial tear-down of connec-
tion, based on the how parameter.

Close a socket, perform connection tear-
down if there are no remaining references
to socket.

Wait for one or more descriptors to become
ready for I/O operations.

Manipulate options associated with a
socket, assigning values to specific options
for multiple protocol levels of the OSI
stack.

Retrieve a value associated with an option
from a socket, specified by the level and
option_name parameters.

Create an endpoint for TLS communica-
tion, which utilizes TCP for its trans-
port protocol if the type parameter is
SOCK_STREAM and uses DTLS over UDP if
type is SOCK_DGRAM.

Perform a connection for the underlying
transport protocol if applicable (e.g., TCP
handshake), and perform the TLS hand-
shake (client-side) with the specified re-
mote address. Certificate and hostname val-
idation is performed according to adminis-
trator and as optionally specified by the ap-
plication via setsockopt.

No TLS-specific behavior.

No TLS-specific behavior.

Retrieve a connection request from the
pending connections, perform the TLS
handshake (server-side) with the remote
endpoint, and create a new descriptor for in-
teractions with the remote endpoint.
Encrypt and transmit data to a remote end-
point.

Receive and decrypt data from a remote
endpoint.

Send a TLS close notify.

Close a socket, send a TLS close notify, and
tear-down connection, if applicable.

No TLS-specific behavior.

Manipulate TLS specific options when the
level parameter is IPPROTO_TLS, such as
specifying a certificate or private key to as-
sociate with the socket. Other 1evel values
interact with the socket according to their
existing semantics.

For a level value of IPPROTO_TLS, re-
trieve TLS-specific option values. Other
level values interact with the socket ac-
cording to their existing semantics.

Table 2: Brief descriptions of the behavior of POSIX socket functions generally and under IPPROTO_TLS specifically.
General behavior is paraphrased from relevant manpages.

USENIX Association

27th USENIX Security Symposium 805

e Enabled Extensions: Specify names of extensions
to employ (e.g., “ALPN”).

/* Use hostname address family */ e Session Caching: Configure session cache informa-
struct sockaddr_host addr; . . .
addr.sin_family = AF_HOSTNAME; tion (TTL, size, location).
strcpy (addr.sin_addr.name, "www.example.com"); o Default Paths: Specify default paths for the private
addr.sin_port = htons (443); .

keys and certificates to employ when developers do
/* Request a TLS socket (instead of TCP) */ notsupplythenL

fd = socket(PF_INET, SOCK_STREAM, IPPROTO_TLS);
/* TLS Handshake (verification done for us) x/
connect (fd, &addr, sizeof (addr));

5.2.1 Application Profiles
/* Hardcoded HTTP request */

char http_request[] = "GET / HTTP/1.1\r\mn..."

char http_response [2048]; The settings mentioned are applied to all TLS connec-

memset (http_response, 0, 2048); tions made with the SSA on the machine. However, addi-
/* Send HTTP request encrypted with TLS */ . : .
send (£d, http_request ,sizeof (http_request) -1,0) ; tional copﬁguratlon proﬁle§ can be s.:rea.ted or mstalled.by
/* Receive decrypted response */ the administrator for specific applications that override
ecv(fd, http_response, 2047, 0); :
S midomn T R i i cker +/ the global settings. The SSA enforces global TLS pol-
close (£d); icy for any application, unless a configuration profile for
/* Print res se x/
prin:;?,,cheszd:\n%S“’ http_response) ; that specific apphcatlon is preser.lt, in Wthh‘CaSC it en-
return 0; forces the settings from the application-specific profile.
We do this in a fashion similar to the application-specific
(a) A simple HTTPS client example under the SSA. profiles of AppArmor [24], the mandatory access con-
Error checks and some trivial code are removed for trol module used by Ubuntu and other Linux distribu-
brevity. Alternatively, the client could have used the tions. Under AppArmor, application-specific access con-
TLS_REMOTE-HOSTNAME option with setsockopt to indi- trol policy is defined in a textual configuration file, which
cate the hostname, and called cox.u.lect using traditional specifies the target application using the file system path
AF_INET or AF_INET6 address families. to the executable of the application. When the applica-
/* Use standard IPv4 address */ tion is run, AppArmor uses the rules in the custom profile
struct sockaddr_in addr; . . : .
addr . sin_family = AF_INET; when enforcing access contr.ol policy. Ubuntu Sh.lpS 'Wlth
addr.sin_addr.s_addr = INADDR_ANY; AppArmor profiles for a variety of common applications.

W 1i 443 .« . . .
/* We want to listen on port * Administrators can create their own profiles or customize
addr.sin_port = htons (443); A N o
those supplied by their OS vendor. We adopt a simi-
/% Request a TLS socket (instead of TCP) x/ lar scheme, in which TLS configuration can be tailored

fd = socket (PF_INET, SOCK_STREAM, IPPROTO_TLS);

/* Bind to local address and port */ to specific applications using custom SSA configuration
bind (fd, &addr, sizeof (addr));

/+ Assign certificate chain &/ profiles. These apphc.atlon profiles can be c'hstnbuFed by
setsockopt (fd, IPPROTO_TLS, OS vendors, application developers, and third parties, or
TLS_CERTIFICATE_CHAIN, L C

CERT_FILE, sizeo? (CERT_FILE)); created by gdmlnlstrators. In any case, admlmlstrato.rs. are
/* Assign private key */ free to modify any configuration to match their policies.

setsockopt (fd, IPPROTO_TLS, TLS_PRIVATE_KEY,
KEY_FILE, sizeof (KEY_FILE));
listen(fd, SOMAXCONN);

5.2.2 Certificate Validation
while (1) {

Striit S°°k:gdri5t°rage adir(;dd , Special care is given to certificate validation as it is

socklen_t addr_len = sizeo addr) ; .

/* Accept new client and do TLS handshake complex and commonly misused. In an effort to max-
using Ezrt and ke%;dpr;v;:ed ;/dd Lem) imize security and the flexibility available to adminis-
int c_ = accept , addr, addr_len) ; ..

/* Receive decrypted request */ trators, the SSA allows administrators to select between
iec‘éic—fd , (req“es‘“ ; BUFFER—S§ZE > 005 standard validation and TrustBase [18]. Under standard
andle_req(request, response); . . e
/% Send encrypted response x/ validation, traditional certificate validation will be per-
Sind(i—fié)respmse » BUFFER_SIZE, 0); formed. This includes some additional checks made by
close(c_ ; . . .
3 strengthening technologies, such as revocation checks,

where available. TrustBase is available for administra-

(b) A simple server example under the SSA. Error checks tors who wish to have finer-grained control over vali-

and some trivial code are removed for brevity. dation, or who wish to employ more exotic validation
mechanisms. Under TrustBase, administrators can em-
Figure 1: Code examples for applications using the SSA. ploy multiple validation strategies, and use them simulta-

neously with various aggregation policies. For example,
using TrustBase, we have deployed validation strategies

806 27th USENIX Security Symposium USENIX Association

IPPROTO_TLS socket option

Purpose

TLS_REMOTE_HOSTNAME

TLS_HOSTNAME

TLS_CERTIFICATE_CHAIN

TLS_PRIVATE_KEY

TLS_TRUSTED_PEER_CERTIFICATES

TLS_ALPN

TLS_SESSION_TTL

Used to indicate the hostname of the remote host. This option will cause the SSA to use the Server
Name Indication in the TLS Client Hello message, and also use the specified hostname to verify the
certificate in the TLS handshake. Use of the AF_HOSTNAME address type in connect will set this option
automatically.

Used to specify and retrieve the hostname of the local socket. Servers can use this option to multiplex
incoming connections from clients requesting different hostnames (e.g., hosting multiple HTTPS sites
on one port).

Used to indicate the certificate (or chain of certificates) to be used for the TLS handshake. This option
can be used by both servers and clients. A single certificate may be used if there are no intermediate
certificates to be used for the connection. The value itself can be sent either as a path to a certificate
file or an array of bytes, in PEM format. This option can be set multiple times to allow a server to use
multiple certificates depending on the requests of the client.

Used to indicate the private key associated with a previously indicated certificate. The value of this
option can either be a path to a key file or an array of bytes, in PEM format. The SSA will report an
error if the provided key does not match a provided certificate.

Used to indicate one or more certificates to be a trust store for validating certificates sent by the remote
peer. These can be leaf certificates that directly match the peer certificate and/or those that directly or
indirectly sign the peer certificate. Note that in the presence or absence of this option, peer certificates
are still validated according to system policy.

Used to indicate a list of IANA-registered protocols for Application-Layer Protocol Negotiation (e.g.,
HTTP/2), in descending order of preference. This option can be fetched after connect/accept to
determine the selected protocol.

Request that the SSA expire sessions after the given number of seconds. A value of zero disables

session caching entirely.
TLS_DISABLE_CIPHER
TLS_PEER_IDENTITY
TLS_PEER_CERTIFICATE_CHAIN

Request that the underlying TLS connection not use the specified cipher.
Request the identity of remote peer as indicated by the peer’s certificate.
Request the remote peer’s certificate chain in PEM format for custom inspection.

Table 3: Sample of socket options at the IPPROTO_TLS level

consisting of combinations of standard validation, OCSP
checking [22], Google CRLset checking [21], certificate
pinning, and DANE [13]. Additional validation mecha-
nisms not listed can also be used, such as notary-based
validation, through the TrustBase plugin API.

5.3 Developer Options and Use Cases

The setsockopt and getsockopt POSIX functions
provide a means to support additional settings in cases
where a protocol offers more functionality than can be
expressed by the limited set of principal functions. Un-
der Linux, 34 TCP-specific socket options exist to cus-
tomize protocol behavior. For example, the TCP_MAXSEG
option allows applications to specify the maximum seg-
ment size for outgoing TCP packets. Arbitrary data can
be transferred to and from the API implementation us-
ing setsockopt and getsockopt, because they take a
generic pointer and a data length (in bytes) as parame-
ters, along with an optname constant identifier. Adding
a new option can be done by merely defining a new
optname constant to represent it, and adding appropri-
ate handling code to the implementation of setsockopt
and getsockopt.

In accordance with this standard, the SSA adds a few
options for IPPROTO_TLS. These options and their uses

are described in Table 3. These reflect a minimal set of
recommendations gathered from our analysis of existing
TLS use by applications, reflecting our third design goal.
This set can easily be expanded to include other options
as their use cases are explored and justified. We caution
against adding to this list ad nauseam, as it may under-
mine the simplicity with which developers interact with
the SSA.

In many cases, a developer writing TLS client code
only needs to write or change a few lines of code
to create a secure connection. The developer sim-
ply uses IPPROTO_TLS as the third parameter of their
call to socket and then calls setsockopt with the
TLS_REMOTE_HOSTNAME option to provide a destination
hostname. Use of this option allows SSA to auto-
matically include the SNI extension and properly vali-
date the hostname for a certificate offered by a server.
To streamline this process, we add a new sockaddr
type, AF_HOSTNAME, which can be supplied to connect.
Some languages, such as Python, have already made this
change to their analog of connect, allowing hostnames
to be provided in place of IP addresses. When supplied
with a hostname address type, the connect function will
perform the necessary host lookup and perform a TLS
handshake with the resulting address, also using the pro-
vided hostname for certificate validation and the SNI ex-

USENIX Association

27th USENIX Security Symposium 807

LOC LOC Familiar Time
Program Modified removed withcode Taken
wget 15 1,020 No 5 Hrs.
lighttpd 8 2,063 No 5 Hrs.
ws-event 5 0 Yes 5 Min.
netcat 5 0 No 10 Min.

Table 4: Summary of code changes required to port a
sample of applications to use the SSA. wget and lighttpd
used existing TLS libraries, ws-event and netcat were not
originally TLS-enabled. LOC = Lines of Code

tension. This also obviates the need for developers to ex-
plicitly call gethostbyname or getaddrinfo for host-
name lookups, which further simplifies their code.

The SSA enables a useful split between administra-
tor and developer responsibilities for secure servers. An
administrator can use software from Let’s Encrypt to au-
tomatically obtain certificates for the hostnames associ-
ated with a given machine, and associate those certifi-
cates (and keys) with an SSA profile for the application.
All the developer needs to do to create a secure server
is to specify IPPROTO_TLS in their call to socket, and
then bind to all interfaces on a given machine. When
incoming clients specify a hostname with SNI, the SSA
automatically supplies the appropriate certificate for the
hostname. If an incoming socket does not use SNI, then
the SSA defaults to the first certificate listed in its con-
figuration. If the developer wishes to bind to a particu-
lar hostname, then they may use setsockopt with the
TLS_HOSTNAME option on their listening socket.

The options listed in Table 3 are useful primarily in
special cases, such as for client certificate pinning, or
specifying a particular certificate and private key to use
in the TLS handshake.

5.4 Porting Applications to the SSA

To obtain metrics on porting applications to use the SSA,
we modified the source code of four network programs.
Two of these already used OpenSSL for their TLS func-
tionality, and two were not built to use TLS at all. Table 4
summarizes the results of these efforts.

We modified the command-line wget web client to
use the SSA for its secure connections. Normally, wget
links with either GnuTLS or OpenSSL for TLS support,
based on compilation configuration. Our modifications
required only 15 lines of source code. These changes
involved using IPPROTO_TLS in the socket call when
the URL scheme was secure (e.g., HTTPS, FTPS) and
then assigning the appropriate hostname to the socket,
using setsockopt with the TLS_REMOTE_HOSTNAME op-
tion. The resulting binary could then be compiled with-

out linking with either GnuTLS or OpenSSL, removing
1,020 lines of OpenSSL-using code and allowing the ad-
ministrator to dictate the parameters of TLS connections
made. This modification was made in five hours by a
programmer with no prior experience with wget’s source
code or OpenSSL, but who had a working knowledge of
C and POSIX sockets.

We also modified lighttpd, a light-weight event-
driven TLS webserver, to use the SSA instead of
OpenSSL. This required only the modification of four
lines of code, which merely specified IPPROTO_TLS in
places where sockets were created. We also made op-
tional calls to setsockopt to specify the private key and
certificate chain (and check errors), with an additional
four lines of code. We removed 2,063 lines of code used
for interfacing with OpenSSL. These software packages
were then tested to ensure that they functioned properly
and used the TLS settings enforced by the SSA. This
modification was made in five hours by another indi-
vidual with no prior experience with 1ighttpd’s source
code or OpenSSL, but who had a working knowledge of
C and POSIX sockets. In porting this and wget, most
of the time spent was used to become familiar with the
source code and remove OpenSSL calls.

We also modified two applications that did not previ-
ously use TLS, an in-house webserver and the netcat
utility. The webserver required modifying only one line
of code—the call to socket to use IPPROTO_TLS on its
listening socket. Under these circumstances, the certifi-
cate and private key used are from the SSA configuration.
However, these can be specified by the application with
another four lines of code to set the private key and cer-
tificate chain and check for corresponding errors. In to-
tal, this TLS upgrade required less than five minutes. The
TLS upgrade for netcat for both server and client con-
nections required modifying five lines of code and was
accomplished in under ten minutes, with the developer
not being familiar with the code beforehand.

These efforts suggest that porting insecure programs to
use the SSA can be accomplished quickly and that port-
ing OpenSSL-using code to use the SSA can be relatively
easy, even without prior knowledge of the codebase.

5.5 Language Support

One of the benefits of using the POSIX socket API as the
basis for the SSA is that it is easy to provide SSA support
to a variety of languages, which is in line with our fourth
design goal. This benefit accrues if an implementation
of the SSA instruments the POSIX socket functionality
in the kernel through the system call interface, which all
network-using languages already rely upon. Any lan-
guage that uses the network must interface with network
system calls, either directly through machine instructions

808 27th USENIX Security Symposium

USENIX Association

or indirectly by wrapping another language’s implemen-
tation. Therefore, given an implementation in the kernel,
it is trivial to add SSA support to other languages that
have networking support. We describe how our imple-
mentation accomplishes this in Section 6.

To illustrate this benefit, we have added SSA support
to three additional languages beyond C/C++: Python,
PHP, and Go. We chose these languages due to the fact
that each uses a different approach for requesting net-
work communication from the kernel. The modifications
required to provide SSA support for these languages are
as follows.

e Python: The reference implementation of the Python
interpreter is written in C and uses the POSIX socket
API for networking support. Adding SSA support to
Python required modification of socketmodule.c,
which was done by merely adding SSA con-
stants (i.e., IPPROTO_TLS and option values for
setsockopt/getsockopt.)

e PHP: The common PHP interpreter passes parame-
ters from its socket library directly to its system call
implementation. This means that modification of the
interpreter isn’t strictly necessary to support the SSA;
applications can supply constants themselves to use
for IPPROTO_TLS and the values for options. Adding
these values to the interpreter required the definition
of SSA constants.

e Go: Go is a compiled language and thus uses sys-
tem calls directly. Adding SSA support to Go merely
required adding a new constant, “tls”, and an asso-
ciated numerical value, to the net package of the
language. Go also provides functions to interface
with the setsockopt and getsockopt system calls
(e.g., SetsockoptInt), which allow light-weight
wrappers of options (e.g., setNoDelay) to be made.
Adding an SSA option function in a similar fash-
ion requires only 2-3 lines of Go code. With these
changes to the Go standard library, application de-
velopers can create a TLS socket by specifying “tls”
when they Dial a connection. To test and demon-
strate these changes, we ported Caddy [14], a popu-
lar Go-based HTTP/2 webserver, to the SSA for its
Internet connections.

Together these efforts illustrate the ease of adding SSA
support to various languages. The majority of the work
required is to define a few constants for existing system
calls or their wrappers.

5.6 TLS 1.30-RTT

TLS 1.3 provides a “0-RTT” mode, which allows clients
to resume an existing TLS session and provide appli-
cation data with a single TLS message. Used incor-
rectly this feature may be vulnerable to replay attacks,

Network Application

| Security Library |

|
(Pposixsocketapri]

T
System CaIII Boundary

Userspace

Network Subsystem
v

Network

Kernel

Figure 2: Data flow for traditional TLS library by net-
work applications. The application shown is using TCP.

but nonetheless offers a significant latency benefit when
employed correctly. The 0-RTT mode is unique in that
it combines connect and send operations. Fortunately,
the socket API has already been adapted to deal with
previous protocol changes that combined these opera-
tions, such as TCP Fast Open (TFO). TFO is supported
by clients via the sendto (or sendmsg) function with the
MSG_FASTOPEN flag. This allows the developer to specify
a destination for the connection and data to send using a
single function. TFO is supported by servers by setting
the TCP_FASTOPEN option on their listening socket. Al-
ternatively, the TCP_FASTOPEN_CONNECT option allows
TFO client functionality using a lazy connect and sub-
sequent send. The SSA can support TLS 1.3 O-RTT us-
ing similar mechanisms, leveraging sendto with a flag
or the TLS_ORTT socket option.

6 Implementation Details

We have developed a loadable Linux kernel module that
implements the Secure Socket API. Source code is avail-
able at owntrust.org.

A high-level view of a typical network application us-
ing a security library for TLS is shown in Figure 2. The
application links to the security library, such as OpenSSL
or GnuTLS, and then uses the POSIX Socket API to
communicate with the network subsystem in the kernel,
typically using a TCP socket.

A corresponding diagram, shown in Figure 3, illus-
trates how our implementation of the SSA compares to
this normal usage. We split our SSA implementation into
two parts: a kernel component and a user space encryp-
tion daemon accessible only to the kernel component. At
a high-level, the kernel component is responsible for reg-
istering all IPPROTO_TLS functionality with the kernel
and maintaining state for each TLS socket. The kernel
component offloads the tasks of encryption and decryp-
tion to an encryption daemon, which uses OpenSSL and

USENIX Association

27th USENIX Security Symposium 809

(Network Application)
|
(Pposixsocketapri)

System CaH Boundary

Userspace

Network Subsystem

www.

Encryption Daemon

Security Library
Admin Config

\/ <

Network

Kernel

Userspace

Figure 3: Data flow for SSA usage by network applica-
tions. The application shown is using the TLS (which
uses TCP internally for connection-based SOCK_STREAM
sockets).

obeys administrator preferences.

Note that our prototype implementation moves the use
of a security library to the encryption daemon. The ap-
plication interacts only with the POSIX Socket API, as
described in Section 5, and the encryption daemon estab-
lishes TLS connections, encrypts and decrypts data, im-
plements TLS extensions, and so forth. The daemon uses
administrator configuration to choose which TLS ver-
sions, cipher suites, and extensions to support. It should
be noted that while modern TLS libraries are compli-
cated and difficult to use, libraries like OpenSSL have a
strong deployment base and a large history of testing and
bug fixing that are difficult to rival. Our prototype imple-
mentation leverages this by calling the OpenSSL library
on behalf of applications. Writing TLS functionality in
kernel code (i.e. not user space) is an undertaking outside
the scope of this work, and one which should involve ex-
tensive participation from the security community.

6.1 Basic Operation

The Linux kernel allows the same network system calls
to handle different protocols by storing pointers to the
kernel functions associated with a given protocol inside
generalized socket objects. The kernel component of
our SSA implementation supplies its own functions for
TLS behavior, using the kernel to associate these func-
tions with all sockets created using IPPROTO_TLS. The
supplied functions are then invoked when a user appli-
cation invokes a corresponding POSIX socket call on a
TLS socket, through the system call interface.

When an SSA-using application invokes an I/O opera-
tion on a TLS socket, the kernel component transfers the

plaintext application data to the user space daemon for
encryption, and the encrypted data are then transmitted
to the intended remote endpoint. In the reverse direction,
encrypted data from the remote endpoint are decrypted
by the daemon and then sent to the kernel to be deliv-
ered to the client application. The user space encryption
daemon is a multi-process, event-driven service that in-
teracts with the OpenSSL library to perform TLS opera-
tions. The kernel load balances TLS connections across
active daemon processes to take advantage of the paral-
lelism provided by multicore CPUs.

To accomplish its tasks, the kernel component must
inform the daemon of important events triggered by ap-
plication system calls. A selection of these events and
their descriptions are as follows:

e Socket creation When a TLS socket is created by
an application, the kernel informs the daemon that it
must create a corresponding socket of the appropri-
ate transport protocol, known as the external socket.
Unknown to the application, this external socket is
used for direct communication with the intended re-
mote host. The TLS socket created by the applica-
tion, known as the internal socket, is used to transfer
plaintext data to and from the daemon.

e Binding After TLS socket creation, an application
may choose to call bind on that socket, requesting
that the socket use the specified source address and
port. Since the daemon interfaces directly with re-
mote hosts, the kernel directs the daemon to bind on
the external socket.

e Connecting When an application calls connect, the
kernel informs the daemon to connect its external
socket to the address specified by the application, and
then connects the internal socket to the daemon.

e Listening Server applications may call 1isten on
their socket. In this case, the kernel informs the dae-
mon of this action, and both the external and internal
socket are placed into listening mode.

e Socket options Throughout a TLS socket’s life-
time, an application may wish to use setsockopt
or getsockopt to assign and retrieve information
about various socket behaviors. Notification of these
options and their values is provided by the kernel
to the daemon. Setting socket options with level
IPPROTO_TLS are directly handled by the daemon,
which appropriately sets and retrieves TLS state de-
pending on the requested option. Setting options at
other levels, such as IPPROTO_TCP or SOL_SOCKET,
are performed on both internal and external sockets,
where appropriate.

Handling of these application requests using the en-
cryption daemon is done in a manner invisible to the ap-
plication. Special care is given to error returns and state
to guarantee consistency between external and internal

810 27th USENIX Security Symposium

USENIX Association

sockets. For example, if the daemon fails to connect to
a specified remote host, the corresponding error code is
sent back to the application, and the kernel does not con-
nect the internal socket to the the daemon, maintaining
both sockets in an unconnected state and informing the
application of real errors.

When the daemon receives a certificate from a remote
peer, it validates that certificate based on administrator
preferences. The administrator can employ traditional
certificate validation checks using a certificate trust store
and the hostname provided by the application through
TLS_REMOTE_HOSTNAME. Remote TLS client connections
are authenticated using the trusted peer certificates, op-
tionally supplied by a server application, as a trust store.
In addition to, or replacement of these methods, adminis-
trators can defer validation to TrustBase [18], which of-
fers multiple coexisting certificate validation strategies.

Creating an internal socket between applications and
the daemon provides natural support for existing socket
I/O and polling operations. Read and write operations
can use their existing kernel implementations with no
modification, and event notifications from the kernel
through the use of select, poll, and epoll are han-
dled automatically.

6.2 Performance

We performed stress tests to ensure that the encryption
daemon could feasibly act as an encryption proxy for
numerous applications simultaneously. We wrote two
client applications, one using the SSA and the other using
OpenSSL, that download a 1MB file over HTTPS using
identical TLS parameters. We created multiple simul-
taneous instances of these applications and recorded the
time required for all of them to receive a remote file over
HTTPS, repeating this for increasing numbers of con-
current processes. We show the results of running these
tests for 1-100 concurrent processes in Figure 4. Each
test was run against both local and remote webservers
and averaged over ten trials. The machine hosting the
applications was a 6-core, hyperthreaded system with 16
GB of RAM, running Fedora 26.

In the local and remote server cases, we find that the
SSA and OpenSSL trendlines overlap each other consis-
tently. We use multiple regression to determine the dif-
ferences between the SSA and OpenSSL timings in both
cases. We find no statistically significant difference for
local connections (p = 0.08) but do find a difference for
remote ones (p = 0.0001). For the remote case we find
that, on average, the SSA actually improves latency by
between 0.1 ms and 0.4 ms per process.

—— SSA (local)
OpenSSL (local)

—— SSA (remote)

————— OpenSSL (remote)

1.0

o o
o ©

Time Elapsed

o
~

0.2

0.0

0 20 40 60 80 100
Number of Processes

Figure 4: Time to transfer IMB over LAN and WAN via
HTTPS for applications using OpenSSL and the SSA,
with varying numbers of simultaneous processes.

7 Coercing Existing Applications

In an effort to further support administrators wishing to
control how TLS is used on their systems, we explored
the ability to dynamically coerce TLS applications us-
ing security libraries to use the SSA instead. We focused
our efforts on overriding applications that dynamically
link with OpenSSL for TLS functionality. Bates et al. [3]
found that 94% of popular TLS-using Ubuntu packages
are dynamically linked with their security libraries, indi-
cating that handling the dynamic linking case would be a
significant benefit.

We supply replacement OpenSSL functions through
a shared library for dynamically linked applications to
override normal behavior (usable via LD_PRELOAD, drop-
in library replacement, etc.). This allows us to intercept
library function calls and translate them to their related
SSA functionality. Under OpenSSL, an application may
invoke a variety of functions to control and use TLS.
Supplying true replacements for each of these 504 sym-
bols is both cumbersome and unnecessary. Instead, we
need only to hook OpenSSL functions which perform op-
erations on file descriptors, and those which provide in-
formation necessary for the SSA to perform the TLS op-
erations properly (e.g., setting hostnames, private keys,
and certificates). By hooking functions that operate on
file descriptors, we isolate an application’s socket behav-
ior from the OpenSSL library, allowing the SSA to con-
trol network interaction exclusively.

OpenSSL uses an SSL structure to maintain all TLS
configuration for a given connection, including the cer-
tificates, keys, TLS method (server or client), etc., that
the application has chosen to associate with the given
TLS connection (which is done through other function

USENIX Association

27th USENIX Security Symposium 811

calls). Our tool obtains the information needed to per-
form a TLS connection from this SSL structure.

When a connection is made on an SSL-associated
socket, our tool silently closes this socket, creates a re-
placement SSA TLS socket, and then uses dup2 to make
the new socket use the old file descriptor. Using the as-
sociated SSL structure, the tool performs the appropri-
ate SSA setsockopt calls and then performs a POSIX
connect on the socket. All socket-using OpenSSL func-
tion, such as SSL_read and SSL_write, are replaced
with normal POSIX equivalents (e.g., recv and send),
thereby allowing the SSA to perform encryption and de-
cryption. Since these functions and others have different
error code semantics, we also make hooks to change the
SSL_get_error function to make appropriate OpenSSL
errors based on their POSIX counterparts.

During the lifetime of the connection, OpenSSL op-
tions set and retrieved by the application are translated to
relevant setsockopt and getsockopt functions, if nec-
essary. For example, the SSL_get_peer_certificate
function was overridden to use getsockopt with a spe-
cial TLS_PEER_CERTIFICATE_CHAIN option to provide
applications with X509 certificates to enable custom val-
idation (many applications use this function to validate
the hostname of certificates).

Network applications can also create and connect
(or accept) a socket before associating them with an
SSL structure. This is typical for applications that use
STARTTLS, such as SMTP. To handle this scenario, the
tool passes ownership of a connected descriptor to the
SSA encryption daemon. The daemon uses this descrip-
tor as its external socket for the brokered TLS connec-
tion, and the SSA provides a new TLS socket descriptor
to the application for interaction with the daemon.

We abstracted this functionality and added it to our
Linux implementation in the kernel component, provid-
ing the developer with a TCP_TLS_UPGRADE option to
upgrade a TCP socket to use TLS via the SSA after it
has been connected. This enables applications to use
STARTTLS when they find that a remote endpoint sup-
ports opportunistic TLS.

In our experimentation with this tool, we successfully
forced wget, irssi, curl, and lighttpd to use the
SSA for TLS dynamically, bringing the TLS behavior of
these applications under admin control.

8 Discussion

Our work is an exploration of how a TLS API could con-
form to the POSIX socket API. We reflect now on the
general benefits of this approach and the specific benefits
of our implementation. We also discuss SSA configura-
tion under different deployment scenarios and offer some
security considerations.

8.1 General Benefits

By conforming to the POSIX API, using TLS becomes
a matter of simply specifying TLS rather than TCP dur-
ing socket creation and setting a small number of options
through setsockopt. All other networking calls (e.g.
bind, connect, send, recv) remain the same, allow-
ing developers to work with a familiar API. Porting in-
secure applications to use the SSA takes minutes, and
refactoring secure applications to use the SSA instead
of OpenSSL takes a few hours and removes thousands
of lines of code. This simplified TLS interface allows
developers to focus on the application logic that makes
their work unique, rather than spending time implement-
ing standard network security with complex APIs.

Because our SSA design moves all TLS functional-
ity to a centralized service, administrators gain the abil-
ity to configure TLS behavior on a system-wide level,
and tailor settings of individual applications to their spe-
cific needs. Default configurations can be maintained
and updated by OS vendors, similar to Fedora’s Cryp-
toPolicy [16]. For example, administrators can set pref-
erences for or veto specific TLS versions, cipher suites,
and extensions, or automatically upgrade applications to
TLS 1.3 without developer patches. We have also found
that by leveraging dynamic linking, as in Bates et al. [3],
applications that currently employ their own TLS usage
can be coerced to use the SSA and thereby conform to
local security policies. This can also protect vulnerable
applications currently using OpenSSL incorrectly, or us-
ing outdated configurations.

8.2 Implementation Benefits

By implementing the SSA with a kernel module, devel-
opers who wish to use it do not have to link with any ad-
ditional userspace libraries. With small additions to libc
headers, applications in C/C++ can use the new constants
defined for the IPPROTO_TLS protocol. Other languages
can be easily modified to use the SSA, as demonstrated
with our efforts to add support to Go, Python, and PHP.
Adding TLS to the Linux kernel as an Internet pro-
tocol allows the SSA to leverage the existing separation
of the system call boundary. Due to this, privilege sep-
aration in TLS usage can be naturally achieved. For ex-
ample, administrators can store private keys in a secure
location inaccessible to applications. When applications
provide paths to these keys using setsockopt (or use
them from the SSA configuration), the SSA can read
these keys with its elevated privilege. If the application
becomes compromised, the key data (and master secret)
remain safely outside the address space of the applica-
tion, inaccessible to malicious parties (getsockopt for
TLS_PRIVATE_KEY is unimplemented). This is similar in

812 27th USENIX Security Symposium

USENIX Association

spirit to Mavrogiannopoulos et al.’s kernel module that
decouples keys from applications [16].

Finally, the loadable nature of the kernel module al-
lows administrators to quickly adopt the SSA and pro-
vides an easy avenue for alternative implementations.
This is in line with previous Linux kernel security work.
The Linux Security Module framework, for example,
was created to provide a shared kernel API to access con-
trol modules, which allowed administrators to pick the
best solution for their needs (e.g., SELinux, AppArmor,
Tomoyo Linux, etc.). In a similar fashion, our approach
in registering a new TLS protocol allows different kernel
modules to hook relevant POSIX socket endpoints for
TLS connections and provide unique implementations.

8.3 Configuration Considerations

The SSA enables administrators and power users to
custom-tailor TLS to their local security policies. Enter-
prise administrators likely have a firm grasp of various
policies and their associated implications. However, typ-
ical users do not have strong security backgrounds and
often rely on their OS vendors for security. With this in
mind, Microsoft, RedHat, Canonical, and other vendors
could ship their systems with strong default global SSA
configurations. These could then be periodically updated
according to modern best practices. Some vendors, such
as Canonical, already ship application-specific security
profiles in addition to global ones [24]. SSA configu-
ration profiles would fit nicely into this model, and also
mesh nicely with efforts to centralize security policies,
such as Redhat’s Fedora CryptoPolicy [15]. Microsoft
and Apple could likewise supply global SSA configura-
tions to users of Windows and MacOS, and allow power
users to further customize these using the settings UI of
these systems. In the mobile space, sometimes operating
system updates for devices arrive at rates far less frequent
than application updates, as with Android. In such cases,
it may be advisable for a vendor, such as Google, to pro-
vide SSA configuration (or even the SSA itself) as a sys-
tem application, where it can be independently updated
from the core OS and granted special permissions.

8.4 Alternative Implementations

POSIX is a set of standards that defines an OS API —
the implementation details are left to system designers.
Accordingly, our presentation of the SSA with its exten-
sions to the existing POSIX socket standard and related
options is separate from the presented implementation.
While our implementation leveraged a userspace encryp-
tion daemon, other architectures are possible. We outline
two of these:

e Userspace only: The SSA could be implemented as
a userspace library that is either statically or dynam-
ically linked with an application, wrapping the na-
tive socket API. Under this model the library could
request administrator configuration from default sys-
tem locations, to retain administrator control of TLS
parameters. While such a system sacrifices the inher-
ent privilege separation of the system call boundary
and language portability, it would not require that the
OS kernel explicitly support the APIL.

e Kernel only: Alternatively, an implementation could
build all TLS functionality directly into the kernel,
resulting a pure kernel solution. This idea has been
proposed within the Linux community [7] and gained
some traction in the form of patches that implement
individual cryptographic components. Some perfor-
mance gains in TLS are also possible in this space.
Such an implementation would provide a backend for
SSA functionality that required no userspace encryp-
tion daemon.

System designers are free to use any of these or other
architectures in accordance with their desired practices.
The benefit to developers is that they can write code for
the same API for all implementations and can pass the
burden of TLS complexity to another party.

8.5 Security Analysis

Our prototype implementation of the SSA centralizes se-
curity in the kernel and daemon processes. As such, any
vulnerabilities present are a threat to all applications uti-
lizing the SSA. Such risks are part of operating system
services in general, as they constitute single points of
failure. On the other hand, centralization allows a com-
munity to focus on hardening a single design, and secu-
rity patches to the system affect all SSA-using applica-
tions immediately. Given the swift response and incen-
tives OS vendors typically have in responding to CVEs,
patches to security systems in the OS will likely be dis-
tributed quicker (and more easily) than patches to indi-
vidual applications. We also note that given the popular-
ity of OpenSSL, it can also behave as a single point of
failure, as with the Heartbleed vulnerability.

Another benefit of centralization is that it vastly sim-
plifies the landscape of security problems we face to-
day. At present, thousands of individual applications
must each be written to use OpenSSL (or other simi-
lar crypto libraries) properly, and experience shows that
there are numerous applications that are at risk due to de-
veloper errors. Under the SSA, developer security flaws
are likely to be less common, due to the simplicity of
invoking the SSA through the POSIX interface and of-
floading of TLS functionality to the operating system.

Regardless of underlying implementation, the SSA

USENIX Association

27th USENIX Security Symposium 813

should protect its configuration files from unauthorized
edits. Since configuration can affect the security of TLS
connections globally, only superusers should be allowed
to make modifications. Developers can still bundle an
SSA configuration profile for their application, which
can be stored in a standard location and assigned appro-
priate permissions during installation. Many software
packages behave similarly already, like Apache web-
server packages, which install protected configuration
files for editing by administrators.

An existing issue in security is made more apparent by
the SSA. The SSA modifies the responsibilities of net-
work security for administrators, operating systems, and
developers. As such, it remains in question which party
is held accountable when security fails. Implementation
bugs can be attributed to the SSA (just like OpenSSL
bugs), but vulnerabilities due to improper configurations
can be the fault of any of these parties. While we believe
that administrators should have the final word over their
systems, it is foreseeable that some application develop-
ers may want to ensure their own security needs are met,
due to legal or other reasons. In such cases, one solution
is for developers to ship their applications with a notice
that obviates any warranty if the administrator decides to
lower TLS security below a given set of thresholds. This
issue of misaligned developer and administrator security
practices is also present in other security areas, such as
running software as a privileged user unnecessarily, mak-
ing configuration files globally writable, or using sensi-
tive software from accounts with weak login credentials.

9 Limitations and Future Work

Our exploration has exposed some limitations of our ap-
proach, our implementation, and the SSA itself. Each of
these has also uncovered potential avenues for additional
exploration and expansion of the SSA.

First because we used static analysis of code using
libssl, we could not determine what code is actually
executed during runtime. Performing rigorous symbolic
execution or runtime analysis of such a large corpus of
packages is outside the scope of our study. As a result
we may have overestimated or underestimated the preva-
lence of use of certain OpenSSL functions. However,
static analysis does have the benefit of providing insight
into the code developers are writing, which is what led
us to find that many developers were expressing TLS op-
tions through compilation controls. In addition, we lim-
ited our analysis to applications using OpenSSL. The us-
age of GnuTLS and other libraries may differ in ways
that could affect our design recommendations.

Because the SSA targets the POSIX socket API, we
believe implementations very similar to ours can be de-
ployed on operating systems that closely adhere to this

standard, such as Android and MacOS. Windows also
supports this API (with minor deviations), although the
mapping between POSIX functions and system calls is
not as direct as in the other systems. As such, the kernel
module component of our implementation would have to
be adapted accordingly.

One limitation of the SSA itself is that it cannot eas-
ily support asynchronous callbacks. While we did not
find a reason why such a feature was strictly needed
for TLS management, it is possible that such a use case
may arise. Hypothetically, to support this, setsockopt
could adopt an option that allowed a function pointer to
be passed as the option value. This function could then
be invoked by the SSA implementation when its corre-
sponding event was triggered. Under kernel implemen-
tations of the SSA, providing arbitrary functions to the
kernel to execute seems like a dangerous proposition. In
addition, invoking a process function from the kernel is
not a natural task and such behavior seems to be limited
to the simplicity of signals and their handlers.

One unexplored path for future work is the suitabil-
ity of the SSA for network security protocols other than
TLS. The QUIC protocol is a prime candidate for exper-
imentation, due to its consolidation of traditionally sepa-
rate network layers, connection multiplexing, and use of
UDP. These features would further test the flexibility of
the POSIX socket API for modern security protocols.

10 Related Work

There is a large body of work that covers the insecurity of
applications using security libraries and methods to im-
prove certificate validation in particular, some of which
we reference in Section 2. Here we outline related work
that aims at simplifying and securing TLS libraries, and
improving administrator control.

Simplified TLS libraries: libtlssep is a simplified
userspace library for TLS that uses privilege separation
to isolate sensitive keys and other data it uses from the
rest of the application, which reduces the payoff for ma-
licious parties exploiting application bugs [1]. This ef-
fort resulted in a significant security improvement, but
developers still have to learn and interface with the new
library, which still requires the addition of hundreds of
lines of code for applications. The OpenSSL fork Li-
breSSL [20] contains 1ibt1ls, a simplified userspace li-
brary for TLS that also removes vulnerable protocols
such as SSL 3.0. However, nearly a hundred functions
are still exported to developers and the library offers no
advantage over OpenSSL for administrator control. Se-
cure Network Programming (SNP) [25] is an older secu-
rity API that predates OpenSSL and SSL/TLS. This API

814 27th USENIX Security Symposium

USENIX Association

allowed programs to use the GSSAPI to access security
services in a simplified way that resembled the Berkeley
sockets API (which heavily influenced the POSIX socket
API). We further this idea by using, rather than emulat-
ing, the POSIX socket API and use it for modern TLS.
Collectively, prior work also largely ignores the suitabil-
ity of their APIs to languages other than C/C++, which
limits their utility to a large amount of developers.

Administrator control over TLS: Fahl et al. [9],
MITHYS [5] and two other solutions, TrustBase [18] and
CertShim [3], provide administrator and operating sys-
tem control over TLS certificate validation. Under these
systems, an administrator can enforce proper validation
by most, if not all, applications on their machines. With
the latter three, administrators can even customize cer-
tificate validation by employing plugins that strengthen
validation (e.g., revocation checks, DANE [13], etc.) As
a consequence, these systems remove the burden on de-
velopers to implement correct validation. However, these
systems fall short of providing administrator control over
more than certificate validation, and all but TrustBase
only function with applications written in specific lan-
guages. In contrast, the SSA provides administrator con-
trol of numerous other aspects of TLS (version, ciphers,
extensions, sessions, etc.) as well as certificate valida-
tion (which can use TrustBase behind the scenes). Ap-
ple’s App Transport Security [2] (ATS) is a feature of
i0S 9+ that mandates that applications use modern TLS
standards for their connections. Applications can add
explicit exceptions to this as needed, and even disable
it entirely. The SSA both enforces administrator pref-
erences and provides a means whereby developers can
easily migrate to using modern TLS. While the SSA en-
ables developers to increase security, they are not able to
decrease it.

11 Conclusion

Our work explored TLS library simplification and fur-
thering administrator control through the POSIX socket
API. Our analysis of OpenSSL and how applications use
it revealed that developers tend to adopt library defaults,
make mistakes when specifying custom settings, imple-
ment boilerplate functionality that is best implemented
by the operating system, and configure TLS usage based
on compile-time arguments supplied by administrators.
These findings informed the design of our API, and
we find that TLS usage fits well within the confines of
the existing POSIX socket API, requiring only the ad-
dition of constant values to three functions (socket,
getsockopt, setsockopt) to support TLS functional-
ity. In our use of the SSA we find that it is easy to port

existing secure applications to the SSA and add TLS
support to insecure applications, requiring as little as
one line of code. Our prototype implementation demon-
strates the API in practice, showing good performance
versus OpenSSL. We demonstrate that our implementa-
tion can support additional programming languages eas-
ily, adding support for three other language implementa-
tions with less than twenty lines of code each. We also
find that existing applications can be dynamically forced
to use the SSA, enabling greater administrator control.
Overall, we feel that the POSIX socket API is a natural
fit for a TLS API and many avenues are available for fu-
ture work, especially with alternative implementations.

References

[1] AMOUR, L. S., AND PETULLO, W. M. Improving applica-
tion security through TLS-library redesign. In Security, Pri-
vacy, and Applied Cryptography Engineering (SPACE). Springer,
2015, pp. 75-94.

[2] APPLE INC. What’s new in iOS. https://developer.
apple.com/library/archive/releasenotes/General/
WhatsNewIniOS/Articles/i0S9.html#/apple_ref/doc/
uid/TP40016198-SW1. Accessed: 01 June 2018.

[3] BATES, A., PLETCHER, J., NICHOLS, T., HOLLEMBAEK, B.,
TiAN, D., BUTLER, K. R., AND ALKHELAIFI, A. Securing
SSL certificate verification through dynamic linking. In ACM
Conference on Computer and Communications Security (CCS)
(2014), pp. 394-405.

[4] BRUBAKER, C., JANA, S., RAY, B., KHURSHID, S., AND
SHMATIKOV, V. Using frankencerts for automated adversarial
testing of certificate validation in SSL/TLS implementations. In
IEEE Symposium on Security and Privacy (SP) (2014), IEEE,
pp. 114-129.

[5] CoNTI, M., DRAGONI, N., AND GOTTARDO, S. MITHYS:
Mind the hand you shake-protecting mobile devices from SSL us-
age vulnerabilities. In Security and Trust Management. Springer,
2013, pp. 65-81.

[6] COOPER, D., SANTESSON, S., FARRELL, S., BOEYEN, S.,
HOUSLEY, R., AND POLK, W. Internet X.509 public key infras-
tructure certificate and certificate revocation list (CRL) profile.
RFC 5280, RFC Editor, May 2008. http://www.rfc-editor.
org/rfc/rfc5280.txt.

[7]1 EDGE, J. TLS in the kernel. https://lwn.net/Articles/
666509/. Accessed: 15 December 2017.

[8] FAHL, S., HARBACH, M., MUDERS, T., BAUMGARTNER, L.,
FREISLEBEN, B., AND SMITH, M. Why Eve and Mallory love
Android: An analysis of Android SSL (in) security. In ACM
Conference on Computer and Communications Security (CCS)
(2012), ACM, pp. 50-61.

[9] FAHL, S., HARBACH, M., PERL, H., KOETTER, M., AND
SMITH, M. Rethinking SSL development in an appified world.
In ACM Conference on Computer and Communications Security
(CCS) (2013), ACM, pp. 49-60.

[10] FOUNDATION, O. S. 1.0.2 manpages. https://www.openssl.
org/docs/man1.0.2/ss1/SSL_CTX_new.html. Accessed:
15 December 2017.

[11] GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R.,
BONEH, D., AND SHMATIKOV, V. The most dangerous code in
the world: validating SSL certificates in non-browser software.
In ACM Conference on Computer and Communications Security
(CCS) (2012), ACM, pp. 38-49.

USENIX Association

27th USENIX Security Symposium 815

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

HE, B., RASTOGI, V., CAO, Y., CHEN, Y., VENKATAKRISH-
NAN, V., YANG, R., AND ZHANG, Z. Vetting SSL usage in
applications with SSLint. In IEEE Symposium on Security and
Privacy (SP) (2015), IEEE, pp. 519-534.

HOFFMAN, P., AND SCHLYTER, J. The DNS-based authenti-
cation of named entities (DANE) transport layer security (TLS)
protocol: TLSA. Internet Requests for Comments, August 2012.
http://www.rfc-editor.org/rfc/rfc6698.txt.

HoLt, M. Caddy. https://caddyserver.com/. Accessed:
15 April 2018.

MAVROGIANNOPOULOS, N. Fedora system-wide crypto
policy. http://fedoraproject.org/wiki/Changes/
CryptoPolicy. Accessed: 15 December 2017.

MAVROGIANNOPOULOS, N., TRMAé, M., AND PRENEEL, B.
A Linux kernel cryptographic framework: decoupling crypto-
graphic keys from applications. In ACM Symposium on Applied
Computing (2012), ACM, pp. 1435-1442.

OLIVEIRA, D., ROSENTHAL, M., MORIN, N., YEH, K.-C.,
CAPPOS, J., AND ZHUANG, Y. It’s the psychology stupid: how
heuristics explain software vulnerabilities and how priming can
illuminate developer’s blind spots. In Annual Computer Security
Applications Conference (ACSAC) (2014), ACM, pp. 296-305.

O’NEILL, M., HEIDBRINK, S., RUOTI, S., WHITEHEAD, J.,
BUNKER, D., DICKINSON, L., HENDERSHOT, T., REYNOLDS,
J., SEAMONS, K., AND ZAPPALA, D. TrustBase: An architec-
ture to repair and strengthen certificate-based authentication. In
USENIX Security Symposium (2017).

ONWUZURIKE, L., AND DE CRISTOFARO, E. Danger is my
middle name: experimenting with SSL vulnerabilities in Android
apps. In ACM Conference on Security & Privacy in Wireless and
Mobile Networks (WiSec) (2015), ACM, pp. 1-6.

OPENBSD. LibreSSL. https://www.libressl.org/. Ac-
cessed: 12 May 2017.

PrROJECTS, T. C. CRLSets. https://dev.chromium.org/
Home/chromium-security/crlsets. Accessed: 23 May
2018.

SANTESSON, S., MYERS, M., ANKNEY, R., MALPANI, A.,
GALPERIN, S., AND ADAMS, C. X.509 internet public key in-
frastructure online certificate status protocol - OCSP. RFC 6960,
RFC Editor, June 2013. http://www.rfc-editor.org/rfc/
rfc6960.txt.

SOUNTHIRARAJ, D., SAHS, J., GREENWOOD, G., LIN, Z.,
AND KHAN, L. SMV-HUNTER: Large scale, automated detec-
tion of SSL/TLS man-in-the-middle vulnerabilities in Android
apps. In Network and Distributed System Security Symposium
(NDSS) (2014).

WIKI, U. AppArmor profiles. https://wiki.ubuntu.com/
SecurityTeam/KnowledgeBase/AppArmorProfiles. Ac-
cessed: 23 May 2018.

Woo, T. Y., BINDIGNAVLE, R., SU, S., AND LAM, S. S. SNP:
An interface for secure network programming. In USENIX Sum-
mer Technical Conference (1994), pp. 45-58.

YAMAGUCHI, F., GOLDE, N., ARP, D., AND RIECK, K. Mod-
eling and discovering vulnerabilities with code property graphs.
In IEEE Symposium on Security and Privacy (SP) (2014), IEEE,
pp. 590-604.

816 27th USENIX Security Symposium

USENIX Association

