
Virtualized Congestion 
Control

Bryce Cronkite-Ratcliff, et. Al.

VMware, Stanford University, Technion

ACM SIGCOMM 2016



Outline

• Introduction

• Virtualized Congestion Control Design
• Hypervisor translation techniques

• Explicit Congestion Notification (ECN) Unfairness

• Evaluation

• Conclusion

2 / 28



Introduction

• Hyperscale datacenters → Huge growth in network 
communication

• Large datacenters are deploying new congestion control 
algorithms
• DCTCP, TIMELY, etc.

• Problem: How about multitenant datacenters?

3 / 28



Multitenant datacenter

• Data centers operated by third parties for the benefit of 
multiple enterprise tenants
• Many tenants lease and share a common physical infrastructure

• Tenants implement their own congestion control algorithm

• What will happen if
• Tenants VMs’ OSes use different congestion control algorithms?

• Tenants VMs’ OSes use old-fashioned congestion control algorithms?

4 / 28



Problem illustration

• Guest VM uses legacy TCP

• Datacenter hypervisor applies new congestion control

➔ Datacenter must ensure that they play well together

5 / 28



How to solve it?

• between tenants at each switch
1. Dividing the bandwidth among the tenants (fixed allocation)

6 / 28



How to solve it?

• between tenants at each switch
1. Dividing the bandwidth among the tenants (fixed allocation)

prevents statistical sharing of unused bandwidth

7 / 28



How to solve it?

• between tenants at each switch
1. Dividing the bandwidth among the tenants (fixed allocation)

2. Modifying datacenter switches and tweak the fairness rules 
between tenants at each switch

prevents statistical sharing of unused bandwidth

8 / 28



How to solve it?

• between tenants at each switch
1. Dividing the bandwidth among the tenants (fixed allocation)

2. Modifying datacenter switches and tweak the fairness rules 
between tenants at each switch

prevents statistical sharing of unused bandwidth

as the number of tenant algorithms increases, 
this approach becomes harder to deploy

9 / 28



Authors’ solution

• Introducing a translation layer

• Giving the illusion to each of the VM guests that it keeps using its own 
congestion control algorithm

• Taking advantage of the fact that all traffic passes through hypervisors

10 / 28



Virtualized Congestion Control (vCC)

• x: input sequence

• f(x): output obtained by datacenter congestion control

• T(x): output of vCC translation

• g(x): output obtained by VM congestion control

11 / 28



vCC design

12 / 28



Hypervisor translation techniques

• vCC translates between congestion control in the guest VM 
and data center

• Candidates for above goal
• Write into/read from guest memory

• Split connection

• Buffer packets/ACKs

• Duplicate ACKs

• Throttle the window

• Modify the 3-way handshake

13 / 28



Write into/read from guest memory

• Modern hypervisors can monitor guest VMs

• Hypervisor can directly write TCP parameters in the guest 
memory and registers

• Hypervisor also can read TCP parameters in the guest VMs

➔ Tenants may not accept that the hypervisor writes into/read 
from the VM memory

14 / 28



Split connection

• The split-connection approach breaks a TCP connection into 
several sub-connections

• Acknowledge packets to the guest VM at some desired rate

• Send them on the datacenter network using the desired 
target congestion control algorithm

➔ The solution goes against TCP end-to-end semantics

15 / 28



Buffer packets/ACKs

• Buffer in-flight packets and ACKs

• vCC can buffer in-flight packets and retransmit according to 
its own RTOmin buffer

• Hypervisor can pace ACKs to make TCP less bursty

➔ The hypervisor needs to manage packet/ACK buffer

16 / 28



Duplicate ACKs

• Hypervisor can duplicate and resend the last sent ACK

• Force the guest to halve its congestion window

➔ This technique may violate TCP semantics

17 / 28



Throttle the receive window

• Hypervisor can decrease the receive window (to guest VM)

• Force the guest to have fewer outstanding packets
• # of packets in flight is upper-bounded by the minimum of the 

congestion and the receive windows

➔ This technique can make the congestion window 
meaningless, conflicting with common implementations of the 
TCP buffer management

18 / 28



Modify the 3-way handshake

• Hypervisor can change the options that are negotiated when 
setting up the connection
• Modify the negotiated MSS, or enable timestamps

➔ The technique can barely help for most practical benefits 
without additional techniques

19 / 28



Scenario: ECN unfairness

20 / 28



ECN unfairness

• ECN allows flows to react to congestion before any data has 
been lost

• ECN has not been widely supported in operating systems 
until recently

• A lack of ECN support can cause such legacy systems to 
suffer

21 / 28



ECN unfairness

• Non-ECN flows show lower goodput than ECN flows

• The greater # of ECN flows, the greater the unfairness

22 / 28



Analysis on ECN unfairness

• The average queue length measured by the switch grows 
beyond RED (Random Early Drop) threshold eventually

• ECN flow’s packets are just marked → halve the window →
Congestion avoidance phase

• Non-ECN flow’s packets are dropped → timeout occurs →
Slow start phase ➔ Low throughput

23 / 28



vCC’s solution

• vCC transforms non-ECN flows to virtual-ECN flows

Modifying 3-way handshakes

Throttling receive window

Virtualized 
ECN flows

24 / 28



Modifying 3-way handshake

25 / 28



Receive window throttling

26 / 28



Evaluation

• Non-ECN flow is starved by multiple ECN flows

• Virtual-ECN flow shows similar performance to ECN flows in 
terms of goodput

27 / 28



Conclusion

• Multitanent datacenters can suffer from differences in 
congestion control algorithms between guest VMs and the 
hypervisor

• vCC enables the datacenter owner to introduce a new 
congestion control algorithm in the hypervisors

• Hypervisors translate between the new congestion control 
algorithm and the old legacy congestion control

28 / 28



29 / 28



30 / 28



31 / 28


