Virtualized Congestion
Control

Bryce Cronkite-Ratcliff, et. Al.
VMware, Stanford University, Technion

ACM SIGCOMM 2016

Outline

e Introduction

* Virtualized Congestion Control Design
» Hypervisor translation techniques
 Explicit Congestion Notification (ECN) Unfairness
« Evaluation

e Conclusion

Introduction

« Hyperscale datacenters - Huge growth in network
communication

 Large datacenters are deploying new congestion control
algorithms
« DCTCP TIMELY, etc.

e Problem: How about multitenant datacenters?

Multitenant datacenter

 Data centers operated by third parties for the benefit of
multiple enterprise tenants
« Many tenants lease and share a common physical infrastructure

« Tenants implement their own congestion control algorithm

« What will happen if
« Tenants VMs' OSes use different congestion control algorithms?
« Tenants VMs' OSes use old-fashioned congestion control algorithms?

Problem illustration

Guest VM \' Hypervisor
A f 3
_ * vee M] Datacenter
Networking | Legacy Translation | NEWer Congestion Network
Stack TCP Lavyer Control
i
N N/
. VRN J

* Guest VM uses legacy TCP
 Datacenter hypervisor applies new congestion control

=» Datacenter must ensure that they play well together

5/28

How to solve It?

1. Dividing the bandwidth among the tenants (fixed allocation)

6/28

How to solve It?

1. Dividing the bandwidth amz:.g the tenants (fixed allocation)

prevents statistical sharing of unused bandwidth

7/ 28

How to solve It?

1. Dividing the bandwidth amz:.g the tenants (fixed allocation)

prevents statistical sharing of unused bandwidth

2. Modifying datacenter switches and tweak the fairness rules

between tenants at each switch

8 /28

How to solve It?

1. Dividing the bandwidth amz:.g the tenants (fixed allocation)

prevents statistical sharing of unused bandwidth

2. Modifying datacenter switches and tweak the fairness rules

betweenr *cnants at eacnn switch

as the number of tenant algorithms increases,
this approach becomes harder to deploy

9/28

Authors’ solution

Guest VM h Hypervisor
SR S
* | vCC -] Datacenter
Metworking :
Legacy Translation Newer Congestion Network
Stack TCP - Control
yer
-
Il\'—") I""ll|_llﬂ"I
. VRN J

* Introducing a translation layer

* Giving the illusion to each of the VM guests that it keeps using its own
congestion control algorithm

 Taking advantage of the fact that all traffic passes through hypervisors

10/ 28

Virtualized Congestion Control (vCC)

g(I'(x)) = flx).

* X: Input sequence

- f(x): output obtained by datacenter congestion control
* T(x): output of vCC translation

* g(x): output obtained by VM congestion control

vCC design

Hypervisor translation techniques

 vCC translates between congestion control in the guest VM
and data center

 Candidates for above goal
« Write into/read from guest memory
* Split connection
* Buffer packets/ACKs
 Duplicate ACKs
 Throttle the window
* Modify the 3-way handshake

Write into/read from guest memory

* Modern hypervisors can monitor guest VMs

« Hypervisor can directly write TCP parameters in the guest
memory and registers

» Hypervisor also can read TCP parameters in the guest VMs

=» Tenants may not accept that the hypervisor writes into/read
from the VM memory

Split connection

* The split-connection approach breaks a TCP connection into
several sub-connections

« Acknowledge packets to the guest VM at some desired rate

* Send them on the datacenter network using the desired
target congestion control algorithm

=» The solution goes against TCP end-to-end semantics

Buffer packets/ACKs

« Buffer in-flight packets and ACKs

« vCC can buffer in-flight packets and retransmit according to
its own RTOmin buffer

* Hypervisor can pace ACKs to make TCP less bursty

=» The hypervisor needs to manage packet/ACK buffer

Duplicate ACKs

« Hypervisor can duplicate and resend the last sent ACK

 Force the guest to halve its congestion window

=>» This technique may violate TCP semantics

Throttle the receive window

* Hypervisor can decrease the receive window (to guest VM)

 Force the guest to have fewer outstanding packets

 # of packets in flight is upper-bounded by the minimum of the
congestion and the receive windows

=>» This technique can make the congestion window

meaningless, conflicting with common implementations of the
TCP buffer management

Modity the 3-way handshake

» Hypervisor can change the options that are negotiated when
setting up the connection
« Modify the negotiated MSS, or enable timestamps

= The technique can barely help for most practical benefits
without additional techniques

Scenario: ECN unfairness

ECN unfairness

« ECN allows flows to react to congestion before any data has
been lost

* ECN has not been widely supported in operating systems
until recently

* A lack of ECN support can cause such legacy systems to
suffer

Goodput [Mbps]

ECN unfairness

non-ECN —— ECN non-ECN —— ECN
20 T T I 14 | I |
i 18 - _
12 + A5 —
g 1% [ok
L0 14 |) 10 ! y =4
3 = 12+ s 8 -
1 5 10 - T 5
o 8 - o o 6
. 3 3
8 af 1 8 ¢]
| i i °[e NN AA~A AN ‘
: 0 0 h | .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Seconds Seconds Seconds
(a) 9 non-ECN vs. 1 ECN flows (b) 5 non-ECN vs. 5 ECN flows (¢) 1 non-ECN vs. 9 ECN flows

* Non-ECN flows show lower goodput than ECN flows
« The greater # of ECN flows, the greater the unfairness

22 / 28

Analysis on ECN unfairness

* The average queue length measured by the switch grows
beyond RED (Random Early Drop) threshold eventually

* ECN flow’s packets are just marked - halve the window -
Congestion avoidance phase

* Non-ECN flow’s packets are dropped - timeout occurs -
Slow start phase = Low throughput

vCC's solution

e vCC transforms non-ECN flows to virtual-ECN flows

Virtualized
ECN flows

Modifying 3-way handshakes

Throttling receive window

Moditying 3-way handshake

— — — — —

S R R R SR

b
5"|"N+ECE+DMF>|

|
Data
_____ \Hypervisor

[(b]
oot > e o | [
I
Guest | Network
ACK ACK
NI N I |
(lc |
| ¢ ACK, RWIN vCC ACK+ECE |
i'.‘-TI"EII"I'S-I-EtII:II"I Layer
Data=CWR |

25/ 28

Receive window throttling

Guest

— — — — —

Update Window
& State Machine

S R R R R

Metwork

| ACK
S ———d1T ===
flc
ACK, RWIN vCC
k_Tran:‘.Jatlun Layer
Data

T —— —— —

L Hypervisor

26 / 28

Evaluation

1.6 =) .
1.8 |- - 1.4 |- » i3 - AiL AR A |
= L& - — ih A Bug P AR P TATVAN X
a 2 1.2 i SRR I5R S Tl AY -
g 14f y g
= 12F - = 1 -
g 82 B B g 0.6 -
(o) b - o) = o
O 041] o 0.4
0.2 |- f/\‘\/“/\/\/\/‘/\A—/\/ - Dot | Il
0 ! | ! 0] I | | l 1 |
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Seconds Seconds
(a) 9 ECN flows and one non-ECN flow (b) 9 ECN flows with one virtual-ECN flow

* Non-ECN flow is starved by multiple ECN flows

* Virtual-ECN flow shows similar performance to ECN flows in
terms of goodput

27 /28

Conclusion

« Multitanent datacenters can suffer from differences in
congestion control algorithms between guest VMs and the
hypervisor

« vCC enables the datacenter owner to introduce a new
congestion control algorithm in the hypervisors

 Hypervisors translate between the new congestion control
algorithm and the old legacy congestion control

29/ 28

0.25 I I T 1

[|
non-ECN = =— —
. ECN
0.2 1| virtual-ECN ——
"
& 0.5t I -
= Iy
(1o | I
o I
£ 01lpg, .
I
I
0.05F 1 -
Iy
I n
| 1 | I | j in

0 200 400 600 800 1000 1200 1400
Goodput [Kbps]

Figure 1: 10 flows share the same bottleneck link: an
ECN-unaware flow (non-ECN), 8 ECN-enabled flows
(ECN), and a non-ECN flow augmented by vCC transla-
tion (virtual-ECN). The figure plots the probability den-
sity function, over many runs, of the average goodput of
each flow. The non-ECN flow is starved, reaching only
10% of the ECN goodput on average. After translation
to virtual-ECN, the average goodput is near identical to
that of ECN.

30 /28

Value

Parameter

RED1 | RED2 | RED3
RED, ,in 90000 | 30000 | 30000
REDmax 90001 | 90000 | 90000
REDlimit 1M 400K | 400K
REDp, ¢ | 61 55 55
REmeb 1.0 0.02 1.0

Table 1: RED Parameters used in the experiments.

31 /28

