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Introduction

« Hyperscale datacenters - Huge growth in network
communication

 Large datacenters are deploying new congestion control
algorithms
« DCTCP TIMELY, etc.

e Problem: How about multitenant datacenters?



Multitenant datacenter

 Data centers operated by third parties for the benefit of
multiple enterprise tenants
« Many tenants lease and share a common physical infrastructure

« Tenants implement their own congestion control algorithm

« What will happen if
« Tenants VMs' OSes use different congestion control algorithms?
« Tenants VMs' OSes use old-fashioned congestion control algorithms?



Problem illustration
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* Guest VM uses legacy TCP
 Datacenter hypervisor applies new congestion control

=» Datacenter must ensure that they play well together
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How to solve It?

1. Dividing the bandwidth among the tenants (fixed allocation)
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1. Dividing the bandwidth amz:.g the tenants (fixed allocation)

prevents statistical sharing of unused bandwidth

2. Modifying datacenter switches and tweak the fairness rules

between tenants at each switch
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How to solve It?

1. Dividing the bandwidth amz:.g the tenants (fixed allocation)

prevents statistical sharing of unused bandwidth

2. Modifying datacenter switches and tweak the fairness rules

betweenr *cnants at eacnn switch

as the number of tenant algorithms increases,
this approach becomes harder to deploy
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Authors’ solution
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* Introducing a translation layer

* Giving the illusion to each of the VM guests that it keeps using its own
congestion control algorithm

 Taking advantage of the fact that all traffic passes through hypervisors
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Virtualized Congestion Control (vCC)

g(I'(x)) = flx).

* X: Input sequence

- f(x): output obtained by datacenter congestion control
* T(x): output of vCC translation

* g(x): output obtained by VM congestion control



vCC design



Hypervisor translation techniques

 vCC translates between congestion control in the guest VM
and data center

 Candidates for above goal
« Write into/read from guest memory
* Split connection
* Buffer packets/ACKs
 Duplicate ACKs
 Throttle the window
* Modify the 3-way handshake



Write into/read from guest memory

* Modern hypervisors can monitor guest VMs

« Hypervisor can directly write TCP parameters in the guest
memory and registers

» Hypervisor also can read TCP parameters in the guest VMs

=» Tenants may not accept that the hypervisor writes into/read
from the VM memory



Split connection

* The split-connection approach breaks a TCP connection into
several sub-connections

« Acknowledge packets to the guest VM at some desired rate

* Send them on the datacenter network using the desired
target congestion control algorithm

=» The solution goes against TCP end-to-end semantics



Buffer packets/ACKs

« Buffer in-flight packets and ACKs

« vCC can buffer in-flight packets and retransmit according to
its own RTOmin buffer

* Hypervisor can pace ACKs to make TCP less bursty

=» The hypervisor needs to manage packet/ACK buffer



Duplicate ACKs

« Hypervisor can duplicate and resend the last sent ACK

 Force the guest to halve its congestion window

=>» This technique may violate TCP semantics



Throttle the receive window

* Hypervisor can decrease the receive window (to guest VM)

 Force the guest to have fewer outstanding packets

 # of packets in flight is upper-bounded by the minimum of the
congestion and the receive windows

=>» This technique can make the congestion window

meaningless, conflicting with common implementations of the
TCP buffer management



Modity the 3-way handshake

» Hypervisor can change the options that are negotiated when
setting up the connection
« Modify the negotiated MSS, or enable timestamps

= The technique can barely help for most practical benefits
without additional techniques



Scenario: ECN unfairness



ECN unfairness

« ECN allows flows to react to congestion before any data has
been lost

* ECN has not been widely supported in operating systems
until recently

* A lack of ECN support can cause such legacy systems to
suffer
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ECN unfairness
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* Non-ECN flows show lower goodput than ECN flows
« The greater # of ECN flows, the greater the unfairness
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Analysis on ECN unfairness

* The average queue length measured by the switch grows
beyond RED (Random Early Drop) threshold eventually

* ECN flow’s packets are just marked - halve the window -
Congestion avoidance phase

* Non-ECN flow’s packets are dropped - timeout occurs -
Slow start phase = Low throughput



vCC's solution

e vCC transforms non-ECN flows to virtual-ECN flows

Virtualized
ECN flows

Modifying 3-way handshakes

Throttling receive window



Moditying 3-way handshake
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Receive window throttling
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Evaluation
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* Non-ECN flow is starved by multiple ECN flows

* Virtual-ECN flow shows similar performance to ECN flows in
terms of goodput
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Conclusion

« Multitanent datacenters can suffer from differences in
congestion control algorithms between guest VMs and the
hypervisor

« vCC enables the datacenter owner to introduce a new
congestion control algorithm in the hypervisors

 Hypervisors translate between the new congestion control
algorithm and the old legacy congestion control
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Figure 1: 10 flows share the same bottleneck link: an
ECN-unaware flow (non-ECN), 8 ECN-enabled flows
(ECN), and a non-ECN flow augmented by vCC transla-
tion (virtual-ECN). The figure plots the probability den-
sity function, over many runs, of the average goodput of
each flow. The non-ECN flow is starved, reaching only
10% of the ECN goodput on average. After translation
to virtual-ECN, the average goodput is near identical to
that of ECN.
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Value

Parameter

RED1 | RED2 | RED3
RED, ,in 90000 | 30000 | 30000
REDmax 90001 | 90000 | 90000
REDlimit 1M 400K | 400K
REDp, ¢ | 61 55 55
REmeb 1.0 0.02 1.0

Table 1: RED Parameters used in the experiments.

31 /28



