
Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey

Wejdene Haouari
Department of Electrical Engineering

& Computer Science,
York University, ON, Canada

Abdelhakim Senhaji Hafid
Department of Computer Science

and Operational Research,
University of Montreal, QC, Canada

Marios Fokaefs
Department of Electrical Engineering

& Computer Science,
York University, ON, Canada

Abstract—Ethereum smart contracts are highly powerful; they
are immutable and retain massive amounts of tokens. However,
smart contracts keep attracting attackers to benefit from
smart contract flaws and Ethereum’s unexpected behavior.
Thus, methodologies and tools have been proposed to help
implement secure smart contracts and to evaluate the security
of smart contracts already deployed. Most related surveys
focus on tools without discussing the logic behind them; in
addition, they assess the tools based on papers rather than
testing the tools and collecting community feedback. Other
surveys lack guidelines on how to use tools specific to smart
contract functionalities. This paper presents a literature review
combined with an experimental report that aims to assist
developers in developing secure smarts, with a novel emphasis
on the challenges and vulnerabilities introduced by NFT frac-
tionalization by addressing the unique risks of dividing NFT
ownership into tradeable units called fractions. It provides
a list of frequent vulnerabilities and corresponding mitigation
solutions. In addition, it evaluates the community’s most widely
used tools by executing and testing them on sample smart
contracts. Finally, a comprehensive guide on how to implement
secure smart contracts is presented.

Index Terms—Blockchain, Ethereum, Smart contracts, Formal
verification, Semantic verification, Fuzzing, Software security,
and Software quality.

1. Introduction

Blockchain technology has exploded in popularity over
the years due to its immutability, security, and transparency
in a permissionless and decentralized environment. One of
the well-known and used implementations is Ethereum. As
of 31 May 2023, the Ethereum cryptocurrency’s market
capital surpassed $220 billion, with millions of transac-
tions being executed every day [1]. Ethereum uses Turing
Complete blockchain technology [2], allowing developers to
implement smart contracts. Smart contracts are executable
programs stored in the blockchain written primarily in so-
lidity [3]. Using smart contracts facilitates the execution
of pre-defined terms without consulting third parties in an
anonymous, transparent, and tempered manner.

The Ethereum blockchain is the foundation for numer-
ous financial projects. Examples include (a) platforms for

decentralized finance (DeFi), which enable users to access
various financial services like lending and borrowing, trad-
ing, and insurance without intermediates. (b) Stablecoins,
cryptocurrencies whose value is tied to that of a fiat currency
or other asset, like gold or the US dollar; (c) Security token
offerings (STOs), which are virtual assets that simulate
ownership of a physical asset like a stock or piece of real
estate. (d) Non-fungible tokens (NFTs), which are unique
digital assets that might signify ownership of a physical or
digital object, like a work of art or a collectible, (e) Amidst
this variety, NFT fractionalization emerges as a notewor-
thy trend, dividing ownership of NFTs into smaller, more
accessible units, thus broadening participation in the digital
asset market. This value attracts attackers to exploit different
vulnerabilities related to implementing smart contracts to
steal cryptocurrencies or tamper with assets. For instance,
a recent attack was on May 2023 where Level Finance
Exchange announced the loss of more than 214,000 $LVL
tokens, approximated to be $1.01 million [4], caused by
an attack on its smart contract by manipulating a recursive
calling vulnerability. There are various vulnerabilities and
causes, such as arithmetic overflows, reentrancy, inadequate
randomness, calling an unknown third-party contract code,
and failing to check the return status of external calls. The
runtime environment that supports contract code execution
provides more attack points. One example is when malevo-
lent miners pick and choose which transactions are included
in a mined block or in what order they are included.

Since vulnerabilities in smart contracts can result in
significant financial loss, multiple tools are proposed to
identify vulnerabilities in Solidity smart contracts. Detection
methods include (a) Symbolic execution when the program
is abstractly executed to cover various possible inputs; (b)
Fuzzy testing by injecting several invalid inputs; (c)Taint
analysis by checking an input flow; and (d) Formal verifi-
cation, when the behavior of the smart contract is checked
mathematically using a formal model.

In this paper, we conduct a literature review and an
experimental report. We present the most common vulnera-
bilities in Solidity smart contracts, including those posed
by the fractionalization of NFTs and the corresponding
mitigation schemes. We also overview and compare the most
popular schemes and tools used to detect smart contract
vulnerabilities. Finally, we propose a set of guidelines for

ar
X

iv
:2

40
3.

19
80

5v
2

 [
cs

.C
R

]
 8

 A
pr

 2
02

4

auditing smart contracts.
In this survey, we searched 2 popular databases, Engi-

neering Village and Scopus, and web articles written by the
Ethereum community Concerning vulnerabilities in Solidity
smart contracts, mitigation tools, and guidelines. Moreover,
we experimentally studied 5 tools widely used to detect
vulnerabilities in smart contracts, namely Oyente [5], Slither
[6], Mythril [7], Manticore [8] and Echidna [9].

The rest of this paper is organized as follows: Section
2 outlines the methodology we used to produce this survey.
Section 3 presents the most common vulnerabilities of smart
contracts and the corresponding mitigation schemes. Section
4 presents standard methodologies for detecting smart con-
tract vulnerabilities. Section 5 introduces the most valuable
tools to detect vulnerabilities in smart contracts. Section 6
presents a set of guidelines for auditing smart contracts.
Section 7 presents an overview of existing related surveys.
Finally, Section 8 concludes the paper.

2. Survey Methodology

In this section, we present the primary research ques-
tions that we hope to answer through this survey. The
methodology we used to collect existing related work is
then presented.

This survey aims to answer the following research ques-
tions:

• RQ1: What are the most frequent vulnerabilities in
Solidity smart contracts?

• RQ2: How to mitigate vulnerabilities in Solidity
smart contracts?

• RQ3: What are the existing methodologies used to
detect the vulnerabilities of smart contracts, and how
do they compare?

• RQ4: what are the most used tools by the Ethereum
community to investigate/mitigate smart contracts
based on Github forks and web articles?

To address these questions, we conducted a Multivocal
Literature Review (MLR) [10] for data preparation; This
technique incorporates both gray literature and white liter-
ature. Gray literature includes blogs, videos, and forums;
it is usually written by practitioners from industry and
academia. It’s not peer-reviewed. White literature contains
peer-reviewed research articles from journals. We chose the
published studies in journals and conferences with high-
impact factors and competitive acceptance rates. We also
check the citation count of the studies being chosen on
Google Scholar to evaluate their impact on the evolution
of this emerging paradigm. The rationale behind choosing
MLR is that the field of smart contracts security is still
relatively new; thus, including literature from practitioners
helps provide a complete overview. Moreover, the feedback
provided by smart contract developers is crucial in selecting
the most useful tools.

As for the search strategy, we followed a protocol
presented by Kitchenham for systemic reviews [11]. This
protocol consists of three phases: (a) Define a search string;

Figure 1: Used search string

(b) Use the string in search engines; and (c) Select literature
based on predefined inclusion and exclusion criteria.

We defined a search string presented in Listing 1 to col-
lect the following resources: (a) Review articles about smart
contract security; (b) Papers that discuss vulnerabilities in
Ethereum smart contracts; (c) Papers that cover detection
methodologies or mitigation schemes of smart contract vul-
nerabilities; and (d) Papers about tools that detect vulner-
abilities in smart contacts. We have only included papers
containing the keywords in the subject, title, or abstract. The
term ”opcode” refers to the basic instructions carried out by
the blockchain’s virtual machine, which regulates the logic
and operations of the smart contract. Turing completeness,
on the other hand, refers to the capacity of a blockchain
or smart contract language to simulate any Turing machine.
This means it can resolve any computational problem given
enough time and resources. Both those terms are used to
represent smart contracts.

Figure 2 illustrates the complete process of article iden-
tifications. 504 conference and journal articles were found
using the specified search string. 41 articles are included
based on the exclusion and inclusion criteria mentioned in
table 1. As for gray literature, we focused on blog posts
found within the first eight pages of Google search results.
The search strings include ”Ethereum smart contract vul-
nerabilities and mitigation” and ”Ethereum smart contract
analysis tools.” Out of the numerous blogs reviewed, eight
posts met our established criteria. To assist the quality of
the gray literature, we have taken into consideration the
following aspects:

• The reputation of the publisher.
• The author’s expertise in smart contract security,

such as job position.
• The content is clearly stated with supported argu-

ments.

3. Vulnerabilities

In this section, we present some of the common vulner-
abilities of Ethereum smart contracts alongside real-world
attacks and prevention mechanisms.

3.1. Reentrancy

3.1.1. Description. Reentrancy is one of the most critical
vulnerabilities to address when implementing smart con-
tracts, also known as a recursive call attack. A contract
calling another contract, with external calls, will cause the

Construct search
string

Select based on
inclusion and

exclusion criteria

Apply search string to
scholarly search

engine

Apply search string to
Google search engine

for grey literature

Select based on
quality of grey

literature

Remove duplicates

n=504

n=380n=29

n=8

n=41

Select based on
inclusion and

exclusion criteria
n=290

Remove articles discuss
machine learning solutions

Remove preprint, press
articles and articles where a

newer version is included

Remove articles that suggest
improvement to the blockchain

implementation

n=180

n=82

Remove articles after Title,
abstract, introduction and

conclusion reveiw
n=49

Figure 2: Articles identification, exclusion and inclusion
methodology.

Criteria Description
Inclusion
Criteria

- Studies related to vulnerabilities in Ethereum: Vul-
nerabilities explication and mitigation techniques.
- Studies related to the security improvement of
Ethereum smart contracts.
- Studies related to vulnerability detection tools in
Ethereum smart contracts.
- Studies that introduce open-source tools to detect
the vulnerabilities of solidity smart contracts.

Exclusion
Criteria

- Non-English papers.
- Results past the first eight Google pages, as we
have noticed that after the eight pages, the results
are not relevant.
- Data sets, tweets, presentations.
- Tools that use machine learning, such as comparing
machine learning tools, need different criteria, such
as the training models, accuracy, etc.
- Studies that are based on the improvement of
blockchain infrastructure rather than smart contract
programming
- Study that is an older version of another paper that
is previously been considered.

TABLE 1: Exclusion/inclusion criteria

stoppage of the calling contract’s execution and memory
state until the called function returns a response. External
calls are exposed in contract interfaces; hackers can use
them to invoke a function within the contract numerous
times, causing the contract to perform unanticipated tasks.
This vulnerability occurs in a solidity smart contract per-
forming critical tasks (e.g., token transfer) before resolving
the effects that should have been addressed (e.g., balance
update).

3.1.2. Implications on NFT Fractionalization. Reentrancy
vulnerabilities have significantly impacted decentralized fi-
nance (DeFi) protocols, illustrating potential risks for frac-
tionalized NFT platforms. For instance, the dForce DeFi
Protocol Hack [12] in February 2023, where an attacker
exploited a reentrancy vulnerability in the Curve Finance
vault on the Arbitrum and Optimism blockchains, part of
the dForce protocol, led to the theft of approximately $3.6
million in assets. This attack underscores the danger reen-
trancy poses to smart contracts handling complex financial
transactions, serving as a warning for platforms dealing with
fractionalized NFTs. Furthermore, the CREAM Finance
Hack [13] in August 2021 and the Siren Protocol Hack [14]
in September 2021, with losses of $18.8 million and $3.5
million, respectively, further exemplify the ongoing threat
of reentrancy attacks to the blockchain and DeFi sectors.

Reentrancy attacks can distort market dynamics by un-
fairly redistributing assets, leading to market manipulation
and loss of liquidity. For fractionalized NFTs, where valua-
tion depends on the underlying asset’s perceived value and
the platform’s integrity, such attacks can result in volatile
price swings and diminished market confidence.

3.1.3. Protection Measures. It is recommended to use
send() and transfer() methods instead of the general call()
method to transfer money. They are deemed safer because
they have a gas limit of 2,300 gas. At the same time, the
method call() does not have a gas limit and forwards the
remaining gas to the target address. The gas limit prohibits
the target contract from making costly external function
calls. The checks-effects-interactions pattern [15] is the most
reliable approach to prevent reentrancy attacks. This pattern
defines how the code of a function should be organized to
minimize undesirable side effects and execution behaviors.
The programmer needs to include all checks, which usually
consist of assert() and need() modifiers. If these checks
pass, the function will resolve all of the effects of the
contract (e.g., balance update). The function should only
communicate with other contracts once all state changes
have been updated. Even if an attacker performs a recursive
call to the initial function, the user cannot exploit the state
of the contract since external functions are called last.

Another protection mechanism against reentrancy at-
tacks is the use of mutex. A mutex locks down the contract
state. Mutex allows only one execution of a critical code
section at a time using a lock mechanism. Only the lock’s
owner can modify it. When an attacker tries to perform a
reentrancy attack, the previous call will lock the state, and
the balance can not be updated. Mutex must be treated with
care to ensure the lock can be released. ReentrancyGuard
is OpenZeppelin’s own mutex implementation [16]. This li-
brary offers a nonReentrant modifier that secures an external
function with a mutex.

3.1.4. Example. Listing 3 illustrates a simplified smart con-
tract, FractionalNFT, designed to manage fractional shares
of an NFT’s revenue. This contract allows owners of frac-
tional shares to withdraw their proportion of sales revenue

Figure 3: Simplified contract with reentrancy vulnerability

when the NFT is sold. The contract contains a critical flaw
in its withdrawShare function, which makes it susceptible to
reentrancy attacks. In this contract, the withdrawShare func-
tion fails to adhere to the checks-effects-interactions pattern,
updating the shareholder’s balance after transferring funds.
This ordering allows for the potential reentrancy, where a
malicious actor could recursively call withdrawShare within
a fallback function, draining the contract’s funds beyond
their rightful share.

To address this vulnerability, the ReentrancyGuard util-
ity from the OpenZeppelin security library can be inte-
grated to prevent recursive calls, as demonstrated in List-
ing 4. By employing the nonReentrant modifier provided
by ReentrancyGuard, the revised contract ensures that the
withdrawShare function cannot be re-entered while it is still
executing, effectively mitigating the reentrancy vulnerability.

3.2. Front Running

3.2.1. Description. Front-running, also known as transac-
tion ordering dependency, occurs when the execution logic
depends on the order of the submitted transactions. The
miner [17] determines the order of transactions in Ethereum.
The transaction is visible to the network before being exe-
cuted. The participants can exploit this visibility by sending
transactions with a higher gas price to be included first.

3.2.2. Implications on NFT Fractionalization. Front-
running can have profound implications in the context of
NFT fractionalization that might include:

1. Manipulation of Share Prices: Malicious actors
could exploit transaction ordering to manipulate the market
for fractional tokens, buying up tokens at lower prices before
a significant transaction increases their value or, conversely,

Figure 4: Simplified contract that mitigates reentrancy vul-
nerability

selling tokens to depress prices ahead of a significant sell
order.

2. Interference with Auction Mechanisms: Many NFT
platforms use auction mechanisms for selling fractional
shares or entire NFTs. Front-runners could preemptively
place bids to disrupt fair auction outcomes, affecting the
final sale price of an NFT.

3. Unfair Distribution of Revenue: In scenarios where
revenue from NFT sales is distributed among shareowners,
front-runners could strategically insert transactions to claim
a disproportionate share of the distributions, undermining
the fairness of the process.

3.2.3. Protection Measures. The best solution to protect
against front-running vulnerability is to remove the advan-
tage of transaction ordering from the application. A solution
is to remove the importance of time. Another possible
solution is to use a commit-reveal hash scheme where the
participant submits the hash of the answer instead of the
answer. The contract then stores the hash and the sender’s
address; the answer is revealed only after all the responses
are submitted.

3.2.4. Example. Listing 5 illustrates a smart contract man-
aging the sale of fractional tokens of an NFT, vulnerable
to front-running. In this scenario, an attacker could observe
pending purchase transactions and execute their purchase
with a higher gas fee, securing shares at the current price
before a large purchase increases their value, thereby disad-
vantaging legitimate buyers.

The contract can be revised to include a commit-reveal
scheme to mitigate the vulnerability and ensure fair transac-
tion processing. This modification requires buyers to commit
to a purchase without initially revealing the exact quantity
or price. This is followed by a reveal phase where the
transaction details are disclosed as shown in Listing 6.

Figure 5: Simplified contract with Front Running vulnera-
bility

Figure 6: Simplified contract that mitigates Front Running
vulnerability

3.3. Arithmetic

3.3.1. Description. Solidity’s integer types, such as uint8,
uint16, and uint256, are constrained by fixed sizes,
capable of representing numbers within specific ranges.
Arithmetic operations that result in values outside these per-
missible ranges lead to integer overflow (exceeding the max-
imum value) or underflow (dropping below zero) [18]. These
vulnerabilities can cause smart contracts to behave unpre-
dictably, potentially leading to significant security breaches
or financial losses.

3.3.2. Implications on NFT Fractionalization. In the con-
text of NFT fractionalization, arithmetic vulnerabilities pose

Figure 7: Simplified contract with Arithmetic vulnerability

unique challenges. For instance, when distributing sales
revenue among shareholders, overflow or underflow errors
can lead to incorrect allocation of funds. This affects the
fairness and accuracy of fee distribution and exposes the
platform to potential exploitation. Arithmetic vulnerabilities,
particularly overflows and underflows, have had substantial
consequences in the decentralized finance (DeFi) sector,
highlighting the associated risks for platforms dealing with
fractionalized NFTs. A prominent example includes the
mintToken function in the Coinstar (CSTR) Ethereum to-
ken’s smart contract [19], which suffered from an integer
overflow. This flaw permitted the contract owner to adjust
any user’s balance to any chosen value arbitrarily. Another
example is the 4chan gang group experienced a substantial
loss of $2.3 million due to an underflow vulnerability in the
ERC-20 token implementation of PoWH (Proof of Weak
Hands), which allowed an attacker to exploit this flaw for
financial gain [20].

3.3.3. Protection Measures. Arithmetic operations should
be appropriately implemented by checking the operators and
operands before operating to avoid integer overflows and un-
derflows. It is recommended to use the assert() and require()
modifiers. Using the library for arithmetic functions is also
advisable, called SafeMath by OpenZeppelin [18]. Solidity
version 0.8.0 has included this library, so the transaction
will revert if an overflow/underflow occurs. A prevalent
method for detecting this type of vulnerability involves taint
analysis, a technique we will elaborate on in Section 4.

3.3.4. Example. Listing 7 showcases a smart contract man-
aging fractional tokens of an NFT, vulnerable to underflow.
If an attempt is made to transfer more tokens than available
under Solidity versions before 0.8.0, this could lead to an
underflow, setting the token balance to an incorrect high
value and potentially enabling malicious token distribution.

Given Solidity 0.8.0’s automatic checks for arithmetic
operations, the compiler directly addresses the primary vul-
nerability of underflows and overflows. However, we can
implement additional logic to further safeguard the integrity
of fractional token calculations and transfers. An improved
version of the smart contract is presented in Listing 8.

Figure 8: Simplified contract that mitigates arithmetic vul-
nerability

3.4. Mishandled Exceptions

3.4.1. Description. Solidity provides two primary
paradigms for interacting with external contracts: direct
contract calls and low-level calls. Direct contract calls
involve invoking functions directly on known contract
interfaces, which inherently revert to failure, thereby
throwing an exception. Conversely, low-level calls,
executed via methods like call(), delegatecall(),
and callcode(), return a boolean success flag instead of
reverting on exceptions [21]. These calls do not inherently
revert transaction execution upon failure; instead, they return
false, necessitating explicit checks of their return values
to ensure the intended execution flow. Failure to adequately
check the result of a low-level call can lead to unintended
execution continuation, potentially compromising contract
logic and security. This vulnerability was notably exploited
in the King of Ether game, where the smart contract’s
failure to verify the result of a send() operation led to
discrepancies in payments, resulting in users overpaying or
underpaying [22].

3.4.2. Implications on NFT Fractionalization. Mishan-
dled exceptions, notably in operations involving the transfer
of tokens or the distribution of revenues, pose significant
risks to the platform’s functionality. For example, if a smart
contract designed to distribute sales revenue from an NFT
among its token holders neglects to confirm the success of
these transactions, it could lead to financial disparities. Such
scenarios may arise when the contract employs low-level
calls for fund transfers without verifying their execution suc-
cess. Malicious entities might seize on these vulnerabilities,
intentionally causing transactions to fail silently by making
a contract reject transactions in its fallback function.

Figure 9: Simplified contract with mishandled exceptions

Figure 10: Simplified contract that mitigates mishandled
exceptions

3.4.3. Example. The example 9 shows a contract that man-
ages fractional ownership of an NFT. It includes a function
to distribute proceeds from NFT sales to token holders. The
contract incorrectly handles a low-level call when sending
proceeds, posing a risk if the call fails.

In the revised contract 10, we use a safer approach to
distribute proceeds by checking the success of each payment
and reverting the transaction if a payment fails.

3.5. Code Injection via delegatecall

3.5.1. Description. There is a unique method called a del-
egate call. The DELEGATECALL opcode is similar to a
conventional message call, except that the code performed
at the target address is executed in the context of the
calling contract. The current address, storage, and balance
refer to the calling contract. This dynamically enables a

smart contract to load code from another smart contract at
runtime. Calling into untrusted contracts via delegatecall() is
particularly risky since the code at the target smart contract
has complete control over the caller’s balance; thus, it can
modify any of the caller’s storage data.

3.5.2. Implications on NFT Fractionalization. Malicious
code executed through delegatecall might tamper with the
contract’s ownership or control mechanisms, enabling at-
tackers to reroute assets or funds. Furthermore, attackers
could change the revenue distribution logic, redirecting prof-
its meant for rightful owners to unauthorized entities. In
extreme cases, like the second Parity multi-sig attack where
an attacker took over three main Parity wallets and stole
$31 million [23], these vulnerabilities could let attackers
take over the NFT fractionalization contract entirely. They
could push out the real owners and managers, potentially
locking, freezing, or stealing assets.

3.5.3. Protection Measures. When employing delegate-
call(), caution is paramount, especially when dealing with
contracts not fully trusted. It’s critical to avoid making
delegatecall() to addresses derived from user inputs unless
there’s a rigorous verification process against a list of trusted
contracts. This precaution helps ensure that only known, se-
cure contracts can be interacted with, significantly reducing
the risk of malicious interference.

Solidity’s library keyword facilitates the creation of
library contracts designed to be stateless and immune to
destruction. By defining a contract as a stateless library, it’s
guaranteed that the executing code cannot alter the storage
data of the calling contract. This design principle is crucial
for minimizing risks associated with storage context issues
that delegatecall() might introduce. Ensuring that delegate-
call() is only used with contracts declared as libraries is a
solid practice.

3.5.4. Example. Listing 11 demonstrates how an NFT frac-
tionalization contract might be exposed to a code injection
vulnerability through unsafe use of delegatecall. In this con-
tract, executeDistributionLogic can execute arbitrary logic
via delegatecall based on the bytecode provided in the data.
If logicContract points to a malicious contract, it could
lead to unintended alterations in its state, including token
ownership manipulation.

To mitigate the risk of code injection via delegatecall, the
contract should strictly control the update of the logicCon-
tract address and ensure that only verified, safe operations
are executable. Also, we introduce a whitelist of approved
logic contract addresses and require that any updates to
logicContract come from this whitelist. Listing 12
illustrates these changes.

3.6. Randomness Using Block Information

3.6.1. Description. In blockchain-based applications, cer-
tain functionalities might require randomness—for instance,
distributing a rare NFT fractionally among participants or

Figure 11: Simplified contract with Code Injection via del-
egatecall vulnerability

Figure 12: Simplified contract that mitigates Injection via
delegatecall vulnerability

deciding the winner of a unique NFT in a lottery; block
information, such as block hash and block timestamp, can
be used to achieve this. This information, however, may
be anticipated and slightly modified by miners. When the
block timestamp is used as the trigger condition to execute
the transaction, it creates a vulnerable situation; dishonest
miners can exploit the value of the block timestamp in
an unethical manner. This vulnerability was exploited in
GovernMental, a Ponzi scheme game [24]. The player who
joined the round last and stayed for at least a minute was
compensated according to the game rules. A miner who is
also a player might change the timestamp to make it look
like they were the last to join for more than a minute and,

Figure 13: Simplified contract with Randomness Using
Block Information vulnerability

therefore, collect the reward.

3.6.2. Implications on NFT Fractionalization. Random-
ness Using Block Information could impact Fractionaliza-
tion solutions. For instance, if randomness derived from
block attributes decides the allocation of rare NFT fractions
or the winners of rewards, it could lead to outcomes unfairly
attributed in favor of those with the ability to influence
block information. Similarly, auctions for selling fractional-
ized NFTs could be manipulated, allowing miners or others
with insider advantages to affect the auction’s outcome by
adjusting the voting period, for example.

3.6.3. Protection Measures. Adopting more reliable
sources of randomness is essential to address the vulnera-
bilities associated with using block information to generate
randomness in smart contracts. One solution is employing
oracles [25] or other external sources that provide verified
randomness robust solution.

Alternatively, cryptographic commitment schemes [26],
exemplified by solutions like RANDOA [27], represent an-
other practical approach. These schemes involve participants
committing to their inputs in a concealed manner, which are
later revealed collectively to generate a random outcome.
This method ensures no individual can influence the result
based on other participants’ commitments, fostering fairness
and security.

3.6.4. Example. Listing 13 shows an example of an NFT
fractionalization platform that randomly assigns fractional
shares of an NFT to participants based on block hash as a
source of randomness. This contract is vulnerable because
miners, or participants with mining capabilities, can poten-
tially manipulate the block hash to influence the distribution
outcome.

To mitigate this vulnerability, the platform can utilize
an external oracle to provide a source of verified ran-
domness. This approach ensures that the randomness used
for fraction distribution is not predictable or manipulable
by miners. Contract illustrated in Listing 14 inherits from
VRFConsumerBase, provided by Chainlink [28], to securely
request and receive verified random numbers. It uses the

Figure 14: Simplified contract with Randomness Using
Block Information vulnerability

Chainlink VRF (Verifiable Random Function) to ensure that
participants, including miners, cannot influence randomness
in determining the distribution of NFT fractions.

3.7. Other Vulnerabilities & Summary

Table 2 presents the papers that include each vulnera-
bility. We notice that the most mentioned vulnerability is
reentrancy, whereas code injection is the least discussed.

Reentrancy Front
Run-
ning

Arithmetic Mishandled
exceptions

Code
Injec-
tion

Randomness

[29] X
[30] X X X
[31] X X X X
[32] X X X
[33] X
[34] X X X X
[24] X X X X X
[35] X X X X
[36] X X X X
[37] X X X X
[5] X X X X
[38] X
[6] X
[18] X X X
[39] X X X
[40] X X
[41] X
[42] X
[43] X

TABLE 2: Coverage of vulnerabilities by each reference

The Smart Contract Weakness Classification Registry
(SWC) [44] is a community database of known smart con-
tract vulnerabilities; it is often up to date. Each issue in-
cludes a description, code samples, and protection measures.
Currently, the registry contains 36 vulnerabilities. One has

to check this registry often to stay up to speed on the newest
threats.

In addition, Rusinek et al. [45] proposed the Smart
Contract Security Verification Standard (SCSVS). SCSVS is
a 14-point checklist designed to standardize smart contract
security for programmers, designers, security auditors, and
vendors. By offering recommendations at every level of the
smart contract development cycle, SCSVS helps avoid the
most known security concerns and vulnerabilities.

4. Detection methods

In this section, we present the most common approaches
for detecting smart contract vulnerabilities. These include
static analysis, dynamic analysis, and formal verification.
We will briefly describe each approach and identify its
benefits and limitations.

4.1. Static Analysis

Static code analysis is a technique of debugging that
involves reviewing source code before running it; this tech-
nique is also known as white-box testing [46]. It is ac-
complished by comparing a set of codes to predefined
coding rules. There are several techniques to examine static
source code; they can be incorporated into a single solution.
Compiler technologies are frequently used to develop these
techniques, such as Taint Analysis, and Data Flow Analysis
[47]. This section presents some static analysis techniques,
namely Control Flow Graph, Taint Analysis, and Symbolic
Analysis.

4.1.1. Control Flow Graph.
The Control Flow Graph (CFG) is a directed graph describ-
ing the control flow. The flow of execution of source code
A graph node denotes a basic block with no jumps; directed
edges represent jumps from one block to another. If a node
only has an exit edge, it is referred to as an entry. And if it
has only an entry edge, it is referred to as an exit block. In
Figure 15, Block 1448 is an entry block, and blocks 1451
and 1452 are exit blocks.

Figure 16 shows the standard process to create CFG in
the context of Ethereum. The first step is Parsing bytecode.
Typically, the algorithm will extract the compiler version
from the metadata; then, it will parse the remaining bytecode
(without the metadata) into opcodes [48]. The parsing stage
is straightforward because each bytecode’s two characters
represent one opcode (0x04 represents DIV). The complete
list of opcodes can be found in the Ethereum yellow paper
[49]. The second step is Identification of basic blocks.
A basic block is a set of opcodes that run in succession
between a jump target and a jump instruction, with no other
instructions interrupting the control flow. To determine the
basic blocks, we need to identify the opcodes that alter the
execution of the control flow; some examples are presented
in Table 3. The JUMPDEST instruction starts a new basic
block, whereas the other opcodes terminate blocks. Each
block is identified by an offset representing its first opcode’s

Figure 15: Example Control Flow Graph

Operation Opcode Description
Flow JUMP Alters the program counter

Alters the program counter
Operations JUMPI Conditionally alters the program

counter
JUMPDEST Marks a valid destination for jumps

System STOP Halts execution
operations REVERT Halts execution reverting state changes

but returning data and remaining gas
RETURN Halts execution returning output data
INVALID Designated invalid instruction
SELFDESTRUCT Halts execution and registers account

for later deletion

TABLE 3: Opcodes that alter execution [49]

position in the bytecode. The last step will be computing
the edge by checking the destination offset; this step is not
trivial as the destination is not an opcode parameter. In the
literature, there are two types of jumps: (a) A pushed jump
is a JUMP followed by a PUSH opcode, allowing the target
offset to be determined simply by glancing at the data in
the previous PUSH opcode; and (b) Orphan jump is not
followed by a PUSH; indeed, its destination is not computed
directly [50]. The computation of orphan jumps depends on
each implementation and is critical for the completeness of
the graph.

Figure 16: Process of generating CFG [49]

Operation Opcode Description
Block GASLIMIT Gets the current block gas limit
information TIMESTAMP Gets the current block timestamp
Environment CALLER Gets caller address
information CALLDATALOAD Gets input data of current

environment
CALLDATACOPY Copies input data in current

environment to memory
Flow SLOAD Loads word from storage
Operations MLOAD Loads word from memory

TABLE 4: Opcodes that allow data insertion [49]

4.1.2. Taint Analysis.
Taint Analysis aims to detect input variables where data
comes from an untrusted source that could be controlled by
an attacker (e.g., environmental data or function parameters).
These data inputs are tainted by the taint analysis tool and
then traced back to potentially sensitive functions, such as
security checks or storage access, often known as sinks.
If the tainted variable flows into a sink, it is marked as
a vulnerability [41].

In the context of Ethereum smart contracts, this tech-
nique is usually used after generating CFG. It exploits the
opcode that an attacker may employ to insert data into the
control flow; it can be divided into block, environmental, and
flow information. Table 4 shows an example of an opcode
that allows data insertion can be found in.

An example of taint analysis is to detect arithmetic
bugs. The first step is to define the possible entrusted inputs
(source), such as CALLDATALOAD and SLOAD. The af-
fected memory, storage, or stack location is tagged. The next
step is to check whether the flow of tagged input contains
arithmetic operations such as ADD, MUL, and SUB with no
catch mechanism (sink). For example, a catch mechanism is
reverted in the case of DIV with 0. If the tagged input falls
into a sink, it will be marked as a possible vulnerability.

4.1.3. Symbolic Analysis.
Symbolic execution is a way of abstracting the execution
of a program such that it can span numerous pathways
through the code. The program is run with symbols as
inputs, and the outputs are expressed in the form of the
symbolic inputs. Each symbolic path has a condition; it
is a formula created by collecting constraints that must
be satisfied by those inputs for the execution to continue
on that path. If the condition is unsatisfiable, the path is
infeasible; otherwise, the path is feasible [51]. Symbolic
analysis is usually paired with CFGs. To find exploits, most
tools employ the Satisfiability Modulo Theories (SMT) [52]
solver to check whether the symbolic output is feasible or
provide a counterexample if it is not.

4.2. Dynamic Analysis

”dynamic analysis” refers to observing code while ex-
ecuted in its original context. It is also known as black-
box testing because it is performed without access to the
source code. It works the same way as an attacker who feeds

malicious code or unpredictable input to the appropriate
functions of a program to look for vulnerabilities. The most
common technique is Fuzzing.

4.2.1. Fuzzing.
Fuzzy testing, often known as fuzzing, is a kind of au-
tomated software testing that involves injecting incorrect,
malformed, or unpredictable inputs into a system; the ob-
jective is to uncover software flaws and vulnerabilities. A
fuzzing tool injects these inputs into the program and then
watches for problems such as crashes or data leaks; it
also can perform static analysis on execution traces. In the
case of smart contracts, Wang et al. [53] deploy the smart
contract on a test network; then, they monitor the balance of
the smart contract to identify basic misappropriation. This
technique removes the necessity for particular patterns to
determine a vulnerability.

4.3. Formal Verification

Formal verification is a technique that automates bug de-
tection of a hardware or software system by comparing a
formal system model to formal requirements or behavior
specifications. Through mathematical analysis, formal veri-
fication can provide a high level of confidence.

To conduct a formal verification, we first need to provide
specifications. A program specification is an unambiguous
definition of the program’s purpose and the scenarios that
are allowed or not to be executed. Tools usually build
deduction trees to verify a property where the root presents
a Hoare triplet [54]. A Hoare triplet consists of: (a) Pre
condition: It is the initial state; (b) Instructions: A series
of transactions; and (c) Post condition: It is the property to
verify. To build deduction trees, theorem-proving algorithms
are usually used, such as Coq [55] and Isabelle/HOL [54].

There are a few contributions that propose languages to
write formal specifications. Permenev et al. [56] proposed
a specification language called VerX, where the syntax is
similar to Solidity; it supports temporal logic. The Ethereum
community also proposed a language named Act [57], which
is a specification for Ethereum Virtual Machine (EVM)
programs.

4.4. Comparison

The goal of using detection methods such as static,
dynamic, and formal verification is to ensure that smart
contracts are correctly executed in all states; this is to ensure
that no vulnerabilities are produced and that specifications
are respected. Table 5 shows the papers that discuss each
methodology.

Static code analysis tools can potentially produce false
negative results; vulnerabilities occur but are not reported.
This could happen because the analysis tool doesn’t allow
for many test scenarios; it doesn’t go into detail when look-
ing at different states because it usually gives you a time-
out. Various vulnerabilities may be false negatives in static
analysis; however, they can be detected correctly utilizing

dynamic analysis tools. Thus, it is strongly recommended
that both types of analysis be combined.

Dynamic analysis generates transactions with random
inputs, which means that it observes random states depend-
ing on the inputs. The challenge for these techniques is to
generate enough transactions and carefully select inputs to
achieve maximum coverage.

Formal verification can provide full coverage for the
specification under consideration because it employs math-
ematical analysis. This guarantees the satisfaction of a
property if verified; however, in general, we cannot cover
everything because the verification can become quickly in-
tractable. Thus, false negatives can still be present. In addi-
tion, formal verification requires a skilled programmer who
can express a smart contract as a mathematical high-level
specification while accounting for a specific low-level virtual
machine. This operation takes a long time and requires a
lot of resources. Audit firms usually make use of formal
verification [58].

Vulnerabilities References
Static analysis [32] [5] [41] [39] [59] [6] [60] [18] [42]

[56] [61]
Dynamic analysis [62] [9] [31] [63] [64] [65] [8]
Formal verification [66] [60] [54] [32] [61]

TABLE 5: Detection methods References

5. Vulnerability Detection Tools

This section will cover the most popular tools for detect-
ing smart contract vulnerabilities. To investigate available
tools, we first looked through academic literature and review
articles (see Table 6). Then, we covered five of the most
commonly used tools, as indicated by developer forums, and
the number of forks and update frequency on GitHub.

5.1. Oyente

5.1.1. Description. Luu et al. propose Oyente [5], the
first symbolic execution tool for Ethereum smart contracts.
Oyente was the basis of several tools developed later [62]
[41]. It has four components: (a) CFGBuilder: It constructs
CFG of the smart contract; (b) Explorer: It takes as input
the Ethereum state. It has a loop that runs a state and then
executes an instruction on the output of that state. The loop
continues until no state remains or a timeout is reached.
The output is a symbolic trace. Explorer determines the
infeasible trace by querying the Z3 SMT solver [84]; (c)
CoreAnalysis: It targets predefined vulnerabilities by looking
for patterns on the symbolic trace; (d) Validator: It queries
Z3 solver with traces flagged as vulnerable to reduce false
positives cases.

Oyente detects seven types of vulnerabilities: Re-
entrancy, Integer overflow/underflow, Transaction order de-
pendence, Timestamp dependence, Callstack Depth, EVM
Code Coverage, and Parity Multisig bugs.

Tool Detection Technique Last
update

1 Slither [6] [67] Static Analysis May 2023

2 MythX [68] static, dynamic & Sym-
bolic Execution

Not Public

3 Mythril [7] [69] Symbolic Execution May 2023

4 Echidna [9] [70] Fuzzer Apr 2023

5 Manticore [8] [71] Symbolic Execution June 2022

6 Securify [39] [72] Static Analysis Sep 2021

7 KEVM [60] [73] Static Analysis Apr 2022

8 Smartcheck [18]
[74]

Static Analysis Dec 2019
deprecated

9 MadMax [42] [75] static analysis Jun 2021

10 Vertigo [76] [77] Mutation Testing Feb 2021

11 EtherSolve [38]
[78]

CFG Extraction Nov 2021

12 Octopus [79] Symbolic Execution Nov 2020

13 Oyente [5] [80] Symbolic Execution Nov 2020
deprecated

14 ERC20 Verifier
[81]

Verify ERC20 Compati-
bility

Nov 2019

15 Solgraph [82] CFG Extraction Jan 2019

16 Osiris [41] [83] Symbolic Execution Sep 2018

TABLE 6: Ethereum Smart Contract Vulnerability Detection
Tools

5.1.2. Execution Example. For evaluating Oyente’s ca-
pabilities in the context of smart contracts dealing with
token sales and potentially fractionalized assets, we utilize
the TokenSaleChallenge.sol smart contract, sourced from
the Capture the Ether challenge series [85]. The contract
embodies a token sale mechanism where tokens are bought
and sold at a fixed price, presenting an analogous scenario
to NFT fractionalization where individual tokens could rep-
resent shares of a fractionalized NFT.

The primary aim is to assess Oyente’s effectiveness in
detecting vulnerabilities that could impact contracts han-
dling fractionalized NFTs. The results, depicted in Figure
17, highlight an Integer Overflow vulnerability and the
execution trace where this issue is detected.

5.1.3. Pros and Cons. Oyente’s deployment via a Docker
image significantly simplifies its setup process, making it
accessible for users with varying expertise in blockchain
technology. This ease of use facilitates quick integration
into development workflows, allowing for the immediate
analysis of Ethereum smart contracts. Despite its user-
friendly setup, Oyente’s compatibility is somewhat limited;

Figure 17: Oyente Output

it supports Ethereum compiler versions only up to 0.4.17.
This restriction may hinder its applicability to smart con-
tracts compiled with newer versions of the Solidity compiler,
potentially limiting its utility in analyzing the latest smart
contract developments.

The output provided by Oyente is clear and concise,
enabling developers and auditors to interpret vulnerability
reports easily. Moreover, Oyente has played a pivotal role
in evolving smart contract analysis tools. It has laid the
groundwork for subsequent innovations, including Maian
[86] and Osiris [41]. These tools have built upon Oyente’s
foundational techniques, such as constructing Control Flow
Graphs (CFGs), to offer enhanced accuracy in detecting
vulnerabilities and orphan paths within smart contracts.

5.2. Slither

5.2.1. Description. In their work, Feist et al. [6] unveiled
a static analysis instrument known as Slither. This tool is
aimed at spotting weaknesses, enhancing code efficiency,
and augmenting the understanding of code. The procedure
it employs is in multiple stages: (a) Data Retrieval: Initially,
it creates the Abstract Syntax Tree of the contract’s source
code using the Solidity compiler, yielding some information
like the Control Flow Graph and contract inheritance; (b)
Conversion into SlitherIR: The source code of the smart
contract is then converted into an internal representation
language referred to as SlithIR; and (c) Examination of
the Code: This phase involves determining the variables
being read and written as well as their types. Furthermore,
it detects unsecured functions where potentially harmful
addresses can execute high-level operations. During this
Examination of the Code stage, it also calculates data de-
pendency and marks variables that rely on user input as
tainted.

Slither is proficient in uncovering 70 bug varieties, en-
compassing self-destructive smart contracts, code injection
via delegatecall, frozen ether, and Reentrancy vulnerabilities
[87].

5.2.2. Execution Example. Using Slither to identify poten-
tial security vulnerabilities, we analyzed the FractionalN-
FTMarket smart contract in Listing 18. The analysis results
are presented in Figure 19. Slither has successfully detected
a reentrancy vulnerability within the sellShares function,
which could allow an attacker to exploit the contract by

Figure 18: FractionalNFTMarket Smart Contract

recursively calling the function to drain its funds. In addition
to detecting this critical vulnerability, Slither offered rec-
ommendations for code improvements and provided a com-
prehensive set of information, including a human-readable
summary, an inheritance graph, and the Control Flow Graph
(CFG) of each function.

Figure 19: Slither Analysis Output for FractionalNFTMarket
Contract

Slither also provides a list of helpful information, in-
cluding a human-readable summary of the scanned contract,
inheritance graph, and CFG of each function; the complete
list can be found in the GitHub repository [67].

5.2.3. Pros and Cons. Slither, an open-source static analy-
sis tool, is recognized for its efficiency in auditing smart con-
tracts. It is user-friendly, offering straightforward installation
options via Docker or Python package managers. With the
capability to detect approximately 70 types of vulnerabili-
ties, Slither facilitates improved code understanding through
visual aids like contract graphs. Moreover, it examines smart
contract compliance with established Ethereum Request for
Comments (ERC) standards, including ERC-20 and ERC-
777 [88].

One limitation of Slither is its tendency to report false
positives, which can complicate the auditing process by
requiring additional validation to review the findings. Crytic
[89], a premium service, can be utilized for a more com-
prehensive analysis. Crytic extends Slither’s capabilities by
identifying an additional 50 types of faults that Slither might
miss. Furthermore, Crytic offers integration with GitHub,
allowing for automated testing on pull requests, thereby en-
hancing the development workflow and ensuring continuous
contract integrity.

5.3. Mythril

5.3.1. Description. Slithe Durieux et al. [7] developed a
tool known as Mythril to identify potential weaknesses in
smart contracts by utilizing symbolic execution. Mythril,
a Python-based command-line tool, allows for interactive
inspection of smart contracts. It produces a Control Flow
Graph (CFG) and performs symbolic execution of EVM
bytecode to restrict the search area. The tool can generate
concrete values to exploit any detected vulnerabilities. To
evaluate the feasibility of different paths, Mythril uses the
Z3 SMT solver [84].

Mythril can discover fourteen distinct types of vulner-
abilities, including Delegate Call To Untrusted Contracts,
Dependence on Predictable Variables, Deprecated Opcodes,
Ether Thief, Exceptions, External Calls, Integer Over/Un-
derflow, Multiple Sends, Self-Destruction, State Change
External Calls, Unchecked Return Values, User Supplied
Assertions, and Arbitrary Storage Write and Arbitrary Jump
[90].

5.3.2. Execution Example. The FractionalNFTMarket.sol
smart contract, presented in Listing 18, has been analyzed
using Mythril to uncover potential security issues. The re-
sulting output is depicted in Figure 20. Mythril has identified
a reentrancy vulnerability within the contract’s ‘sellShares‘
function. The output provides detailed information, includ-
ing the state of the contract, when the vulnerability can be
triggered, and the specific transaction sequence that leads
to the issue. Unlike Slither, Mythril offers the identification
of vulnerabilities and the concrete inputs that cause them,
enhancing the developer’s understanding of the contract’s
weaknesses. Nevertheless, Mythril’s output does not extend
to include recommendations for remediation of the detected
issues.

Figure 20: Mythril Output

5.3.3. Pros and Cons.
Mythril stands out for its accessibility, offering straight-
forward installation options via Docker or Python package
manager, streamlining the setup process. It allows for gran-
ular analysis, with the flexibility to test individual functions
through custom Python scripts. This targeted testing can be
particularly advantageous for developers seeking to debug
specific aspects of their smart contract code.

However, Mythril’s thorough approach to smart contract
analysis can be computationally intensive, often resulting in
longer analysis times than tools like Slither. The resource-
heavy nature of Mythril’s symbolic execution process may
not be the most efficient choice for rapid iteration during
development. For those seeking a more advanced feature set
and cloud-based capabilities, Mythril’s commercial counter-
part, MythX [68], offers enhanced analysis power and can be
seamlessly integrated into continuous integration/continuous
deployment (CI/CD) pipelines [91].

5.4. Manticore

5.4.1. Description. Mossberg et al. [8] implemented a tool
named Manticore to detect vulnerabilities in smart contracts.
The primary aim of Manticore is to track inputs that kill a
program, record instruction-level implementation, and pro-
vide Python API access to its analysis engine. Manticore
uses symbolic execution to locate distinct computation paths
in EVM bytecode. It discovers inputs that will stimulate
these computation paths with the aid of the SMT solver
Z3 [84]. It keeps track of the execution traces for each
execution. Manticore converts Solidity code to bytecode for
evaluation; then, it examines the traces for vulnerabilities,
such as reentrancy and reachable self-destruct operations,
reporting them in the source code context. This tool is
developed by TrailOfBits [92].

Mythril detects ten types of vulnerabilities, namely, dele-
gatecall, overflow, reentrancy, Use of potentially unsafe/ma-
nipulable instructions, Reachable external, Reachable self-
destruct instructions, Uninitialized memory usage, Uninitial-
ized storage usage, Enable INVALID instruction detection,
and Unused internal transaction return values [93].

5.4.2. Execution Example. For our examination of Man-
ticore, we used the TokenSaleChallenge.sol [85], the same
one used to test Oyente. This contract represents a simplified
model for trading tokens, which can be seen as stand-ins for
fractional tokens of an NFT.

The tool is extremely slow as it takes more than one
hour to perform the test; it takes less than a minute for
the other tools using the same smart contract and machine.
The analysis output is a folder containing a summary report,
traces, and analysis for each test case. Manticore generated
51 test cases but failed to detect the smart contact’s reen-
trancy vulnerability, as shown in Figure 21.

5.4.3. Pros and Cons. Manticore offers a diverse set of
command-line tools along with scriptable Python APIs,
suitable for a variety of use cases and allowing for in-depth

Figure 21: Manticore Output

analysis procedures. It covers a broad spectrum of known
vulnerabilities, making it a valuable asset for developers
seeking to secure their smart contracts.

However, the detailed nature of Manticore’s analysis
comes with a trade-off in terms of performance. The tool can
take significantly longer to complete its analysis than others,
sometimes leading to timeouts. This is often due to its
comprehensive symbolic execution approach, which, while
powerful, is also resource-intensive. Additionally, Manticore
requires considerable memory, which could be a limiting
factor for users with constrained hardware resources.

5.5. Echidna

5.5.1. Description. Echidna is a specialized property-based
fuzzing tool for smart contracts implemented by Grieco at
al. [9] that takes inspiration from QuickCheck [94]. Echidna
seeks to violate user-defined invariants that represent poten-
tial contract errors rather than just finding crashes [95]. The
tester writes these invariants, and it is called echidna prop-
erty: A particular Solidity function with no arguments that
returns ”true” on success and has a name that begins with
”echidna.” Echidna reports any transactions that result in
these properties returning false or error, essentially disclos-
ing contract bugs [96]. Echidna employs various strategies to
produce test inputs, including iterative feedback, structural
constraints, and known input variation.

5.5.2. Execution Example. To test Echidna, we have
adapted the tokensalechallenge.sol smart contract [85]. We
created a derived contract TestTokenSaleChallenge that ex-
tends the original TestTokenSaleChallenge contract shown
in Listing 22. The test properties in the TestTokenSaleChal-
lenge are designed to check for arithmetic errors that can
occur in the logic used for NFT fractionalization.

The echidna test overflow function aims to validate that
token balances do not exceed the maximum uint256 value,
a critical check to prevent overflow in token allocations,
which could mirror similar concerns in the distribution of
fractional NFT shares. Conversely, echidna test underflow
ensures that the balance never drops below zero.

By defining these test functions, Echidna will attempt to
generate test inputs that trigger these conditions to ensure
the contract behaves as expected.

Echidna generates its results directly to the console, as
figure 23 shows, distinguishing between successfully vali-
dated and failed properties. Echidna offers a counterexample
for each property that didn’t meet the validation criteria,
which is essentially a step-by-step breakdown of how the
property failed under specific conditions. In our example,
the underflow test did not pass, even without initiating a

Figure 22: TestTokenSaleChallenge Smart Contract

transaction. This was because the msg.sender was left empty,
indicating that the system can encounter failures in scenarios
where sender information is not provided. However, Echidna
didn’t detect an overflow issue, possibly due to a short time-
out period, which prevented it from producing a sequence
revealing this vulnerability as we did not change the default
configuration.

Figure 23: Echidna Output

5.5.3. Pros and Cons. One of Echidna’s notable strengths is
its straightforward setup process. It offers users multiple in-
stallation options, including direct build with Stack, Docker,
or Homebrew. This flexibility facilitates accessibility across
different platforms and development environments.

However, users are required to define the properties
they wish to test explicitly. This feature allows for cus-

tomized and focused testing scenarios, ensuring the analysis
is directly relevant to the contract’s intended behaviors
and security assumptions. Despite the advantage of tailored
testing, this approach adds a layer of complexity. Users
must thoroughly understand their contract’s logic and po-
tential vulnerabilities to define meaningful test properties
effectively. This necessity for manual property definition
demands a higher level of engagement and expertise from
the user than tools that automatically infer test cases or
vulnerabilities.

5.6. Summary

Table 7 presents a comparative analysis of Oyente,
Slither, Mythril, Manticore, and Echidna. The comparison
is based on the number of detected vulnerabilities, the
methodology used, an academic or company tool, the code
level, the required solidity version, and the availability of
documentation.

Oyente Slither Mythril Manticore Echidna
Number of
detected vul

4 70 14 10 -

Methodology Symbolic Symbolic Static Symbolic Fuzzing
Code Level EVM Solidity Solidity EVM Solidity
Restrictions
(Solidity)

≤ 0.4 ≥ 0.4 ≥ 0.4 ≥ 0.4 not
speci-
fied

Documentation Low Medium High High Medium

TABLE 7: Qualitative comparison of selected tools

In conclusion, there are various tools that can be used
to test smart contracts and identify a wide range of vul-
nerabilities. Static analysis tools are still the most popular
because they are simple to use compared to (a) fuzzing,
which necessitates a lot of resources to set up the test
environment, and (b) formal verification, which necessitates
expertise in contract specification writing.

6. Guidelines for secure smart contracts

Writing a secure and bug-free smart contract is crucial,
as a small bug can lead to the loss of millions of dollars. In
this section, we provide guidelines on how to write a secure
smart contract [97]. These steps are summarized in Figure
24

The first step in testing a smart contract is to visualize its
control flow correctly to have a global view and better un-
derstand the interactions between its different components.
Slither is an exciting tool to use during this step since it has
a variety of printers that can be used to visualize call graphs,
contract inheritance relationships, modifiers called by each
function, etc. Solidity Visual Developer is another interesting
tool that could be integrated into Visual Studio Code [98].
This extension helps with semantic highlighting. It also
generates a detailed class outline. This step is essential to
spot critical functions that must be tested in the next stage.

Afterward, the smart contract should be subjected to
automatic analysis. It is best to start with common bug

detection using Mythril and Slither; we recommend com-
bining tools for better results. To target a certain critical
function, it is best to use the Manticore tool as it allows
the implementation of specific use cases. It is also crucial
to employ dynamic analysis tools to decrease the number of
false positives generated by static tools and to cover addi-
tional states. Echidna is an interesting ethereum fuzzing tool
to use [9]. It is recommended to look for unique features in
smart contracts. For instance, if the smart contract is an ERC
token, it will be essential to use Slither’s ERC Conformance
functionality to make sure that the smart contract conforms
to the ERC standards put in place.

Because automated tools are unaware of the context for
which the contract was produced, running more specific
testing will increase the detection accuracy. To achieve this,
Echidna and Manticore [99] allow for the definition of
security properties in solidity. Indeed, these tools help check
arithmetic operations, external interactions, and standardiza-
tion. Whereas Slither allows the definition of properties with
Slither Python APIs, it will enable checking for inheritance,
variable dependencies, and access restrictions.

The third step will be formal verification, which en-
sures that the contract requirements are legitimate. This
step, however, is challenging as it requires unique expertise
(e.g., writing the formal specification using a specification
language). Finally, the output of the preceding steps must be
manually verified, and corrective actions based on patterns
and mitigation techniques must be applied. After fixing the
bugs, one has to redo the previous steps to increase the
probability of a bug-free contract.

Figure 24: Smart contract auditing

7. Related Work

Several surveys covering smart contract vulnerabilities
have been published in the last few years. The majority of
these surveys cover one or two of the following areas: smart
contract security vulnerabilities, analysis of existing tools
and methodologies to detect smart contract vulnerabilities,
formal specification and verification, and common design
patterns and practices. Kushwaha et al. [100] conducted a
systematic review of Ethereum smart contract analysis tools,
classifying them into static and dynamic analysis categories.
They scrutinize 86 tools, discussing their methodologies,
such as taint analysis, symbolic execution, and fuzzing.
However, it lacks consideration for the developer com-
munity’s preferences and practical scenarios where each
analysis tool would be most beneficial. Kushwaha et al.
[21] presented a comprehensive systematic review of secu-
rity vulnerabilities in Ethereum blockchain smart contracts.
The paper categorizes vulnerabilities into three main root
causes and seventeen sub-causes, providing in-depth insights
into twenty-four specific vulnerabilities and their prevention
methods, detection, and analysis tools. Despite providing a
comparative analysis of various detection tools, the paper
falls short in offering in-depth feedback on the effectiveness
and limitations of these tools. Di Angelo et al. [101] pro-
vided a state-of-the-art review of analysis tools of Ethereum
smart contracts. The study is based on the actual execution
of the tools. It classifies the tools based on availability,
maturity level, purpose, and analysis method. However, the
survey [101] becomes obsolete (e.g., no longer maintained).
Harz et al. [102] presented languages, paradigms, and a
verification approach for smart contracts. They did not,
however, go into depth about the verification tools or known
vulnerabilities. Li et al. [103] discussed blockchain safety
problems and proposed enhancements; however, the survey
[103] is general because, for example, it included different
types of blockchain, such as Ethereum and Bitcoin. Saad et
al. [104] investigated several attacks on various blockchain
platforms and protection mechanisms. They briefly covered
mitigation schemes. However, they did not cover tools to
detect vulnerabilities. Atzei et al. [24] presented signifi-
cant vulnerabilities and attacks related to Ethereum smart
contracts. However, they did not cover mitigation schemes.
Chen et al. [105] presented 40 types of Ethereum vulnera-
bilities, their causes, and 29 attacks; however, they did not
cover tools to detect vulnerabilities. Zhu et al. [106] pre-
sented 11 smart contract vulnerabilities in-depth, along with
various defenses against well-known attacks. They covered
schemes to detect those vulnerabilities. Durieux et al. [107]
conducted an empirical review of nine automated analysis
tools on 47,518 contracts; they developed a framework to
analyze these tools. The analysis uses two data sets of smart
contracts with tagged vulnerabilities. However, the study did
not cover vulnerabilities of smart contracts and mitigation
schemes.

We conclude that existing surveys focus only on one
or two areas of smart contract vulnerabilities. Furthermore,
none of the studies discuss the tools based on their output

format.

8. Conclusion

In this study, we presented detailed common vulnerabil-
ities in Ethereum smart contracts and mitigation solutions
based on patterns and standards. We have covered the most
popular detection methodologies: static analysis, dynamic
analysis, and formal verification. We also discussed the
benefits and drawbacks of each method. In addition, we
provided community-recommended vulnerability detection
tools, an execution sample, and detailed feedback for each.
Based on our investigation of existing methodologies and
tools, we proposed a guideline with the tool(s) for each step
in auditing smart contracts.

We observed that most tools detect vulnerabilities but do
not provide refactoring recommendations. In future work,
we aim to implement a refactoring module that proposes
improvements based on the detected bugs and error traces.
We also aim to study attacks related to NFTs, such as wash
trading, a type of market manipulation in which attackers
repeatedly buy and sell the same NFT to increase the price
and trading volume.

References

[1] “Ethereum charts and statistics — etherscan.” https://etherscan.io/
stat/supply, 2022. Accessed: 2023-05-31.

[2] B. Buterin, “Ethereum white papee,”
https://ethereum.org/en/whitepaper/, 2014.

[3] S. Team, “Solidity official website .” https://soliditylang.org/, 2022.
Accessed: 2022-10-02.

[4] J. Aki, “Blockchain attack: Level finance announces
loss of $1m from smart contract security breach.”
https://insidebitcoins.com/news/blockchain-attack-level-finance-
announces-loss-of-1m-from-smart-contract-security-breach.
Accessed: 2023-05-10.

[5] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, (New York,
NY, USA), Association for Computing Machinery, 2016.

[6] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis
framework for smart contracts,” in 2019 IEEE/ACM 2nd Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), IEEE, may 2019.

[7] B. Mueller, “Smashing ethereum smart contracts for fun and real
profit.” https://conference.hitb.org/hitbsecconf2018ams/materials/
WHITEPAPERS/WHITEPAPER%20-%20Bernhard%20Mueller%
20-%20Smashing%20Ethereum%20Smart%20Contracts%20for%
20Fun%20and%20ACTUAL%20Profit.pdf, 2018.

[8] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,”
in Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, pp. 1186–1189, 11 2019.

[9] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:
Effective, usable, and fast fuzzing for smart contracts,” in Pro-
ceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2020, (New York, NY, USA),
p. 557–560, Association for Computing Machinery, 2020.

https://etherscan.io/stat/supply
https://etherscan.io/stat/supply
https://soliditylang.org/
https://insidebitcoins.com/news/blockchain-attack-level-finance-announces-loss-of-1m-from-smart-contract-security-breach
https://insidebitcoins.com/news/blockchain-attack-level-finance-announces-loss-of-1m-from-smart-contract-security-breach
https://conference.hitb.org/hitbsecconf2018ams/materials/WHITEPAPERS/WHITEPAPER%20-%20Bernhard%20Mueller%20-%20Smashing%20Ethereum%20Smart%20Contracts%20for%20Fun%20and%20ACTUAL%20Profit.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/WHITEPAPERS/WHITEPAPER%20-%20Bernhard%20Mueller%20-%20Smashing%20Ethereum%20Smart%20Contracts%20for%20Fun%20and%20ACTUAL%20Profit.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/WHITEPAPERS/WHITEPAPER%20-%20Bernhard%20Mueller%20-%20Smashing%20Ethereum%20Smart%20Contracts%20for%20Fun%20and%20ACTUAL%20Profit.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/WHITEPAPERS/WHITEPAPER%20-%20Bernhard%20Mueller%20-%20Smashing%20Ethereum%20Smart%20Contracts%20for%20Fun%20and%20ACTUAL%20Profit.pdf

[10] V. Garousi, M. Felderer, and M. V. Mäntylä, “The need for mul-
tivocal literature reviews in software engineering: Complementing
systematic literature reviews with grey literature,” in Proceedings of
the 20th International Conference on Evaluation and Assessment in
Software Engineering, EASE ’16, (New York, NY, USA), Associa-
tion for Computing Machinery, 2016.

[11] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey,
and S. Linkman, “Systematic literature reviews in software engi-
neering – a systematic literature review,” Information and Software
Technology, vol. 51, no. 1, pp. 7–15, 2009.

[12] anonymous authors, “Dforce network - rekt.” https://rekt.news/
dforce-network-rekt/. Accessed: 2023-10-05.

[13] T. Claburn, “Thief milks cream finance for $18m+ in cryptocurrency
after spotting security bug.” https://www.theregister.com/2021/08/
31/cream finance theft/. Accessed: 2022-04-24.

[14] quadrigainitiative, “Description of events.” https://www.
quadrigainitiative.com/casestudy/sirenmarketreentrancybug.php.
Accessed: 2022-04-24.

[15] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the
ethereum ecosystem and solidity,” in 2018 International Workshop
on Blockchain Oriented Software Engineering (IWBOSE), pp. 2–8,
2018.

[16] openzeppelin, “openzeppelin security.” https://docs.openzeppelin.
com/contracts/4.x/api/security#ReentrancyGuard. Accessed: 2022-
04-20.

[17] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breiden-
bach, and A. Juels, “Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability,” in
2020 IEEE Symposium on Security and Privacy (SP), pp. 910–927,
2020.

[18] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis
of ethereum smart contracts,” in Proceedings of the 1st Interna-
tional Workshop on Emerging Trends in Software Engineering for
Blockchain, WETSEB ’18, (New York, NY, USA), p. 9–16, Asso-
ciation for Computing Machinery, 2018.

[19] nist, “Cve-2018-10299 detail.” https://nvd.nist.gov/vuln/detail/CVE-
2018-10299. Accessed: 2022-04-20.

[20] W. Chen, Z. Zheng, E. C.-H. Ngai, P. Zheng, and Y. Zhou, “Exploit-
ing blockchain data to detect smart ponzi schemes on ethereum,”
IEEE Access, vol. 7, pp. 37575–37586, 2019.

[21] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Sys-
tematic review of security vulnerabilities in ethereum blockchain
smart contract,” IEEE Access, vol. 10, pp. 6605–6621, 2022.

[22] kingoftheether, “Post-mortem investigation (feb 2016).” https://
www.kingoftheether.com/postmortem.html. Accessed: 2022-04-20.

[23] openzeppelin, “openzeppelin the parity wallet hack explained.”
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-
405a8c12e8f7/. Accessed: 2022-04-20.

[24] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (sok),” in Principles of Security and Trust
(M. Maffei and M. Ryan, eds.), (Berlin, Heidelberg), pp. 164–186,
Springer Berlin Heidelberg, 2017.

[25] X. Liu, R. Chen, Y.-W. Chen, and S.-M. Yuan, “Off-chain data
fetching architecture for ethereum smart contract,” in 2018 Interna-
tional Conference on Cloud Computing, Big Data and Blockchain
(ICCBB), pp. 1–4, 2018.

[26] D. Boneh and M. Naor, “Timed commitments,” in Advances in
Cryptology — CRYPTO 2000, CRYPTO ’00, (Berlin, Heidelberg),
p. 236–254, Springer-Verlag, 2000.

[27] randao, “randao github.” https://github.com/randao/randao. Ac-
cessed: 2022-04-20.

[28] Chainlink, “Chainlink vrf.” https://docs.chain.link/vrf, 2023. Ac-
cessed: 2024-01-02.

[29] N. Fatima Samreen and M. H. Alalfi, “Reentrancy vulnerability iden-
tification in ethereum smart contracts,” in 2020 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE),
pp. 22–29, 2020.

[30] M. Kaleem, A. Mavridou, and A. Laszka, “Vyper: A security com-
parison with solidity based on common vulnerabilities,” in 2020 2nd
Conference on Blockchain Research & Applications for Innovative
Networks and Services (BRAINS), pp. 107–111, 2020.

[31] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in 2018 33rd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE),
pp. 259–269, 2018.

[32] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts,” in 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018, 01 2018.

[33] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
Finding reentrancy bugs in smart contracts,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings, ICSE ’18, (New York, NY, USA), p. 65–68, Associ-
ation for Computing Machinery, 2018.

[34] A. López Vivar, A. L. Sandoval Orozco, and L. J. Garcı́a Villalba,
“A security framework for ethereum smart contracts,” Computer
Communications, vol. 172, pp. 119–129, 2021.

[35] A. Dika and M. Nowostawski, “Security vulnerabilities in ethereum
smart contracts,” in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communica-
tions (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pp. 955–962, 2018.

[36] T. Krupa, M. Ries, I. Kotuliak, K. Košťál, and R. Bencel, “Security
issues of smart contracts in ethereum platforms,” in 2021 28th
Conference of Open Innovations Association (FRUCT), pp. 208–
214, 2021.

[37] A. Mense and M. Flatscher, “Security vulnerabilities in ethereum
smart contracts,” in Proceedings of the 20th International Confer-
ence on Information Integration and Web-Based Applications & Ser-
vices, iiWAS2018, (New York, NY, USA), p. 375–380, Association
for Computing Machinery, 2018.

[38] F. Contro, M. Crosara, M. Ceccato, and M. D. Preda, “Ethersolve:
Computing an accurate control-flow graph from ethereum bytecode,”
2021.

[39] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, (New York, NY, USA), Association
for Computing Machinery, 2018.

[40] M. Wöhrer and U. Zdun, “Design patterns for smart contracts in
the ethereum ecosystem,” in 2018 IEEE International Conference
on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and So-
cial Computing (CPSCom) and IEEE Smart Data (SmartData),
pp. 1513–1520, 2018.

[41] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer
bugs in ethereum smart contracts,” in Proceedings of the 34th
Annual Computer Security Applications Conference, ACSAC ’18,
(New York, NY, USA), p. 664–676, Association for Computing
Machinery, 2018.

[42] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and
Y. Smaragdakis, “Madmax: Surviving out-of-gas conditions in
ethereum smart contracts,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, 2018.

[43] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: A smart contract security analyzer for composite vulner-
abilities,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2020,
(New York, NY, USA), p. 454–469, Association for Computing
Machinery, 2020.

https://rekt.news/dforce-network-rekt/
https://rekt.news/dforce-network-rekt/
https://www.theregister.com/2021/08/31/cream_finance_theft/
https://www.theregister.com/2021/08/31/cream_finance_theft/
https://www.quadrigainitiative.com/casestudy/sirenmarketreentrancybug.php
https://www.quadrigainitiative.com/casestudy/sirenmarketreentrancybug.php
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard
https://nvd.nist.gov/vuln/detail/CVE-2018-10299
https://nvd.nist.gov/vuln/detail/CVE-2018-10299
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://github.com/randao/randao
https://docs.chain.link/vrf

[44] swcregistry, “Smart contract weakness classification and test cases.”
https://swcregistry.io/. Accessed: 2022-04-02.

[45] securing, “Smart contract security verification standard.” https://
github.com/securing/SCSVS. Accessed: 2022-04-02.

[46] W. Wögerer and T. U. Wien, “A survey of static program analysis
techniques,” 2005.

[47] owasp, “Static code analysis.” https://owasp.org/www-community/
controls/Static Code Analysis. Accessed: 2022-04-02.

[48] nist, “Opcodes for the evm.” https://ethereum.org/en/developers/
docs/evm/opcodes/. Accessed: 2023-05-09.

[49] G. Wood et al., “Ethereum: A secure decentralised generalised trans-
action ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1–32, 2014.

[50] F. Contro, M. Crosara, M. Ceccato, and M. D. Preda, “Ethersolve:
Computing an accurate control-flow graph from ethereum bytecode,”
CoRR, vol. abs/2103.09113, 2021.

[51] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, p. 385–394, jul 1976.

[52] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Hand-
book of model checking, pp. 305–343, Springer, 2018.

[53] H. Wang, Y. Li, S.-W. Lin, C. Artho, L. Ma, and Y. Liu, “Oracle-
supported dynamic exploit generation for smart contracts,” 2019.

[54] S. Amani, M. Bégel, M. Bortin, and M. Staples, “Towards verifying
ethereum smart contract bytecode in isabelle/hol,” in Proceedings
of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, (New York, NY, USA), p. 66–77,
Association for Computing Machinery, 2018.

[55] D. Annenkov, J. B. Nielsen, and B. Spitters, “ConCert: a smart
contract certification framework in coq,” in Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and
Proofs, ACM, jan 2020.

[56] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020
IEEE Symposium on Security and Privacy (SP), pp. 1661–1677,
2020.

[57] ethereum, “Act formal specification.” https://ethereum.github.io/act/.
Accessed: 2022-04-20.

[58] “Blockchain security & ethereum smart contract audits.” https:
//consensys.net/diligence/, note = Accessed: 2022-05-12, Year =
2022, author=consensys.

[59] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis,
“Ethainter: A smart contract security analyzer for composite vulner-
abilities,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, p. 454–469,
2020.

[60] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian,
D. Guth, B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu,
“Kevm: A complete formal semantics of the ethereum virtual ma-
chine,” in 2018 IEEE 31st Computer Security Foundations Sympo-
sium (CSF), pp. 204–217, 2018.

[61] L. Mazurek, EthVer: Formal Verification of Randomized Ethereum
Smart Contracts, pp. 364–380. Springer-Verlag, 09 2021.

[62] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings
of the 34th Annual Computer Security Applications Conference,
(New York, NY, USA), Association for Computing Machinery, 2018.

[63] J. Ellul and G. J. Pace, “Runtime verification of ethereum smart con-
tracts,” in 2018 14th European Dependable Computing Conference
(EDCC), pp. 158–163, 2018.

[64] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for
smart contracts,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, (New York, NY, USA),
p. 1398–1409, Association for Computing Machinery, 2020.

[65] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and A. W. Roscoe, “Re-
guard: Finding reentrancy bugs in smart contracts,” 2018 IEEE/ACM
40th International Conference on Software Engineering: Companion
(ICSE-Companion), pp. 65–68, 2018.

[66] I. Grishchenko, M. Maffei, and C. Schneidewind, A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts,
pp. 243–269. Springer International Publishing, 04 2018.

[67] crytic, “slither tool github.” https://github.com/crytic/slither. Ac-
cessed: 2023-05-31.

[68] CONSENSYS, “Mythx officil website.” https://mythx.io/. Accessed:
2022-03-28.

[69] ConsenSys, “mythril tool github.” https://github.com/ConsenSys/
mythril. Accessed: 2023-05-31.

[70] crytic, “Echidna tool github.” https://github.com/crytic/echidna. Ac-
cessed: 2023-05-31.

[71] trailofbits, “manticore tool github.” https://github.com/trailofbits/
manticore. Accessed: 2023-05-31.

[72] eth sri, “securify2 tool github.” https://github.com/eth-sri/securify2.
Accessed: 2023-05-31.

[73] runtimeverification, “Kevm tool github.” https://github.com/
runtimeverification/evm-semantics. Accessed: 2023-05-31.

[74] smartdec, “smartcheck tool github.” https://github.com/smartdec/
smartcheck. Accessed: 2023-05-31.

[75] nevillegrech, “Madmax tool github.” https://github.com/nevillegrech/
MadMax. Accessed: 2023-05-31.

[76] J. J. Honig, M. H. Everts, and M. Huisman, “Practical mutation
testing for smart contracts,” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, pp. 289–303, Springer
International Publishing, 2019.

[77] JoranHonig, “vertigo tool github.” https://github.com/JoranHonig/
vertigo. Accessed: 2023-05-31.

[78] SeUniVr, “Ethersolve tool github.” https://github.com/SeUniVr/
EtherSolve. Accessed: 2022-03-28.

[79] pventuzelo, “octopus tool github.” https://github.com/pventuzelo/
octopus. Accessed: 2023-05-31.

[80] enzymefinance, “Oyente tool github.” https://github.com/
enzymefinance/oyente. Accessed: 2023-05-2023.

[81] openzeppelin, “erc20-verifier.” https://erc20-verifier.openzeppelin.
com/. Accessed: 2022-04-11.

[82] raineorshine, “solgraph tool github.” https://github.com/raineorshine/
solgraph. Accessed: 2023-05-31.

[83] christoftorres, “Osiris tool github.” https://github.com/christoftorres/
Osiris. Accessed: 2023-05-23.

[84] “Programming z3.” http://theory.stanford.edu/∼nikolaj/
programmingz3.html, 2022. Accessed: 2022-04-17.

[85] SmartContractSecurity, “Swc-101 test case.” https://swcregistry.
io/docs/SWC-101#integer-overflow-mapping-sym-1sol. Accessed:
2022-04-02.

[86] P. Praitheeshan, L. Pan, and R. Doss, Security Evaluation of Smart
Contract-Based On-chain Ethereum Wallets, pp. 22–41. Springer-
Verlag, 12 2020.

[87] crytic, “slither list of vulnerabilities.” https://github.com/crytic/
slither#detectors. Accessed: 2022-04-02.

[88] crytic, “Slither erc conformance.” https://github.com/crytic/slither/
wiki/ERC-Conformance. Accessed: 2022-04-20.

[89] crytic, “Crytic website.” https://www.crytic.io/. Accessed: 2022-03-
30.

[90] ConsenSys, “mythril modules.” https://mythril-classic.readthedocs.
io/en/master/module-list.html. Accessed: 2022-06-11.

https://swcregistry.io/
https://github.com/securing/SCSVS
https://github.com/securing/SCSVS
https://owasp.org/www-community/controls/Static_Code_Analysis
https://owasp.org/www-community/controls/Static_Code_Analysis
https://ethereum.org/en/developers/docs/evm/opcodes/
https://ethereum.org/en/developers/docs/evm/opcodes/
https://ethereum.github.io/act/
https://consensys.net/diligence/
https://consensys.net/diligence/
https://github.com/crytic/slither
https://mythx.io/
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/crytic/echidna
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://github.com/eth-sri/securify2
https://github.com/runtimeverification/evm-semantics
https://github.com/runtimeverification/evm-semantics
https://github.com/smartdec/smartcheck
https://github.com/smartdec/smartcheck
https://github.com/nevillegrech/MadMax
https://github.com/nevillegrech/MadMax
https://github.com/JoranHonig/vertigo
https://github.com/JoranHonig/vertigo
https://github.com/SeUniVr/EtherSolve
https://github.com/SeUniVr/EtherSolve
https://github.com/pventuzelo/octopus
https://github.com/pventuzelo/octopus
https://github.com/enzymefinance/oyente
https://github.com/enzymefinance/oyente
https://erc20-verifier.openzeppelin.com/
https://erc20-verifier.openzeppelin.com/
https://github.com/raineorshine/solgraph
https://github.com/raineorshine/solgraph
https://github.com/christoftorres/Osiris
https://github.com/christoftorres/Osiris
http://theory.stanford.edu/~nikolaj/programmingz3.html
http://theory.stanford.edu/~nikolaj/programmingz3.html
https://swcregistry.io/docs/SWC-101#integer-overflow-mapping-sym-1sol
https://swcregistry.io/docs/SWC-101#integer-overflow-mapping-sym-1sol
https://github.com/crytic/slither#detectors
https://github.com/crytic/slither#detectors
https://github.com/crytic/slither/wiki/ERC-Conformance
https://github.com/crytic/slither/wiki/ERC-Conformance
https://www.crytic.io/
https://mythril-classic.readthedocs.io/en/master/module-list.html
https://mythril-classic.readthedocs.io/en/master/module-list.html

[91] ConsenSys, “Mythx and continuous integration (part 1): Circleci.”
https://blog.mythx.io/howto/mythx-and-continuous-integration-
part-1-circleci/. Accessed: 2022-05-11.

[92] trailofbits, “Category archives: Manticore.” https://blog.trailofbits.
com/category/manticore/. Accessed: 2022-04-22.

[93] trailofbits, “List of ethereum detectors.” https://github.com/
trailofbits/manticore/wiki/Ethereum-Detectors. Accessed: 2022-06-
11.

[94] “Quickcheck: Automatic testing of haskell programs.” https://
hackage.haskell.org/package/QuickCheck. Accessed: 2023-05-31.

[95] trailofbits, “Echidna, a smart fuzzer for ethereum.” https://blog.
trailofbits.com/2018/03/09/echidna-a-smart-fuzzer-for-ethereum/.
Accessed: 2023-05-31.

[96] crytic, “Testing a property with echidna.” https://github.com/crytic/
building-secure-contracts/blob/master/program-analysis/echidna/
introduction/how-to-test-a-property.md. Accessed: 2023-05-31.

[97] ethereum, “Smart contract security checklist.” https://ethereum.org/
fr/developers/tutorials/secure-development-workflow/. Accessed:
2022-04-22.

[98] vscode, “Solidity visual developer.” https://marketplace.visualstudio.
com/items?itemName=tintinweb.solidity-visual-auditor. Accessed:
2022-04-22.

[99] manticore, “Property based symbolic executor: manticore-verifier.”
https://manticore.readthedocs.io/en/latest/verifier.html. Accessed:
2022-04-22.

[100] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee,
“Ethereum smart contract analysis tools: A systematic review,” IEEE
Access, vol. 10, pp. 57037–57062, 2022.

[101] M. di Angelo and G. Salzer, “A survey of tools for analyzing
ethereum smart contracts,” in 2019 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPCON),
pp. 69–78, 2019.

[102] D. Harz and W. J. Knottenbelt, “Towards safer smart con-
tracts: A survey of languages and verification methods,” CoRR,
vol. abs/1809.09805, 2018.

[103] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on
the security of blockchain systems,” Future Generation Computer
Systems, vol. 107, pp. 841–853, 2020.

[104] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang,
and D. Mohaisen, “Exploring the attack surface of blockchain: A
comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. PP, pp. 1–1, 03 2020.

[105] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum
systems security: Vulnerabilities, attacks, and defenses,” ACM Com-
put. Surv., vol. 53, no. 3, 2020.

[106] L.-H. Zhu, B.-K. Zheng, M. Shen, F. Gao, H.-Y. Li, and K.-X. Shi,
“Data security and privacy in bitcoin system: A survey,” Journal of
Computer Science and Technology, vol. 35, pp. 843–862, jul 2018.

[107] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47, 587 ethereum smart contracts,”
CoRR, vol. abs/1910.10601, 2019.

https://blog.mythx.io/howto/mythx-and-continuous-integration-part-1-circleci/
https://blog.mythx.io/howto/mythx-and-continuous-integration-part-1-circleci/
https://blog.trailofbits.com/category/manticore/
https://blog.trailofbits.com/category/manticore/
https://github.com/trailofbits/manticore/wiki/Ethereum-Detectors
https://github.com/trailofbits/manticore/wiki/Ethereum-Detectors
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://blog.trailofbits.com/2018/03/09/echidna-a-smart-fuzzer-for-ethereum/
https://blog.trailofbits.com/2018/03/09/echidna-a-smart-fuzzer-for-ethereum/
https://github.com/crytic/building-secure-contracts/blob/master/program-analysis/echidna/introduction/how-to-test-a-property.md
https://github.com/crytic/building-secure-contracts/blob/master/program-analysis/echidna/introduction/how-to-test-a-property.md
https://github.com/crytic/building-secure-contracts/blob/master/program-analysis/echidna/introduction/how-to-test-a-property.md
https://ethereum.org/fr/developers/tutorials/secure-development-workflow/
https://ethereum.org/fr/developers/tutorials/secure-development-workflow/
https://marketplace.visualstudio.com/items?itemName=tintinweb.solidity-visual-auditor
https://marketplace.visualstudio.com/items?itemName=tintinweb.solidity-visual-auditor
https://manticore.readthedocs.io/en/latest/verifier.html

	Introduction
	Survey Methodology
	Vulnerabilities
	Reentrancy
	Description
	Implications on NFT Fractionalization
	Protection Measures
	Example

	Front Running
	Description
	Implications on NFT Fractionalization
	Protection Measures
	Example

	Arithmetic
	Description
	Implications on NFT Fractionalization
	Protection Measures
	Example

	Mishandled Exceptions
	Description
	Implications on NFT Fractionalization
	Example

	Code Injection via delegatecall
	Description
	Implications on NFT Fractionalization
	Protection Measures
	Example

	Randomness Using Block Information
	Description
	Implications on NFT Fractionalization
	Protection Measures
	Example

	Other Vulnerabilities & Summary

	Detection methods
	Static Analysis
	Control Flow Graph
	Taint Analysis
	Symbolic Analysis

	Dynamic Analysis
	Fuzzing

	Formal Verification
	Comparison

	Vulnerability Detection Tools
	Oyente
	Description
	Execution Example
	Pros and Cons

	Slither
	Description
	Execution Example
	Pros and Cons

	Mythril
	Description
	Execution Example
	Pros and Cons

	Manticore
	Description
	Execution Example
	Pros and Cons

	Echidna
	Description
	Execution Example
	Pros and Cons

	Summary

	Guidelines for secure smart contracts
	 Related Work
	Conclusion
	References

