
WPSE: Fortifying Web Protocols via
Browser-Side Security Monitoring

Stefano Calzavara and Riccardo Focardi, Università Ca’ Foscari Venezia;
Matteo Maffei and Clara Schneidewind, TU Wien;

Marco Squarcina and Mauro Tempesta, Università Ca’ Foscari Venezia

Usenix Security 2018

Minkyung Park

mkpark@mmlab.snu.ac.kr

May 6, 2021

Contents
• Motivation

• OAuth 2.0 protocol

• WPSE

• Evaluation

• Conclusion

2/18

Web protocols
• Web protocols are usually to implement authentication and

authorization at remote servers
• e.g., OAuth 2.0, OpenID Connect, SAML 2.0, etc.

• Designing and implementing web protocols is a error-prone task
• Many vulnerabilities are reported

• Why? web browser is agnostic to the web protocol semantics
• Start/end of the protocol

• The order in which messages should be processed

• The confidentiality/integrity guarantees desired for a protocol run

3/18

Countermeasure?
• Major service providers try to aid developers to correctly integrate

web protocols
• Provide JavaScript APIs

• Web developers are not forced to use them
• Still can use them incorrectly

• The APIs still fail
• The APIs themselves do not implement the best security practices

4/18

Web Protocol Security Enforcer (WPSE)
• To strengthen the security guarantees of web protocols, browsers are

extended with a security monitor

• The security monitor enforces the compliance of browser behaviors

• The browser is aware of the intended protocol flow by given protocol
specifications
• Protocol specification can be written and verified once, uniformly enforced at

a number of different websites

• Web applications are automatically protected against bugs or
vulnerabilities on the browser-side

5/18

Background on OAuth 2.0
• Resource owners can grant third-parties controlled access to

resources at remote servers
• It is also used for authenticating the resource owner by giving third parties to

the owner’s identity (Single Sign-On)

• Third-party applications are referred as relying party (RP)

• Remote servers storing the resources are referred as identity provider (IdP)

• The OAuth 2.0 specification defines four grant types (modes)
• Authorization code, implicit, resource owner password credentials, and client

credentials

6/18

Authorization code mode
• RP submits authorization code to prove its access grant

• In implicit mode, instead of granting an authorization code to RP, the IdP provides an access
token directly

7/18

Quora Google

Challenges #1: protocol flow
• Protocols are specified in terms of a number of sequential message exchanges

• The browser is not forced to comply with the intended protocol flow

• Attacks to skip messages or to accept them in a wrong order are possible

• Example: session swapping attack
• Completing a social login in the user’s browser that was not initiated before

• When RP does not provide the state parameter at step (2), it is possible to force the honest
user’s browser to authenticate as the attacker

• State parameter: a value bound to a session (e.g., session hash)

CSRF attack
- intercept
- send attacker’s authorization code

authorization code’

authorization code’,
8/18

Have authorization code’

Challenges #2: secrecy of messages
• The security of protocols relies on the confidentiality of cryptographic

keys and credentials
• However, the browser is not aware of which data must be kept secret

• Example: state leak attack
• If the page loaded at the redirect URI loads a resource from a malicious server,

the state parameter and the authorization code can be leaked in the Referer
header

Send req. (e.g., load ad library)
(Referer header: containing authorization code, state)

3rd party
9/18

Challenges #3: integrity of messages
• The integrity of the messages they send should be ensured

• However, the browser cannot perform these checks

• Example: Naïve RP session integrity attack
• RP supports distinguish a selected IdP using different redirect URIs

• An attacker controlling a malicious IdP (AIdP) can confuse the RP about which
IdP is being used and force the user’s browser to login as the attacker

HIdPAIdP

attacker’s authorization code’ with HIdP

HIdP redirection URI
RP uses the attacker’s session with the honest IdP

10/18

Design overview
• The Web Protocol Security Enforcer (WPSE) is the browser-side

security monitor
• The prototype is implemented as a browser extension

• Web protocols are given in XML to WPSE
• Web protocols are described in terms of the HTTP(S) exchanges observed by

the web browser

• WPSE checks the given protocol specifications over messages in
runtime
• If any violation is detected, the corresponding message is not processed and

the protocol run is aborted

11/18

Protocol specification
• It defines the syntactic structure, the expected order of the messages, and the

required secrecy and integrity policies
• Syntactic structure is described using regular expressions

• It can be represented in finite state automata
• Each state: one stage of the protocol execution

• State transition: sending HTTP(S) requests and receiving HTTP(S) responses

e<a>: HTTP request
e(h): HTTP response
- e: remote endpoint
- a: a list of parameters
- h: a list of headers

12/18

Protocol specification
• Secrecy policy: which parts of the HTTP(S) responses must be confidential

• 𝑥 → 𝑆: the value x can be disclosed only to the origins specified in the set S

• e.g., 𝜋𝑆: “authcode” is disclosed only to “origin” and “https://accounts.google.com”

• Integrity policy: incoming messages is compared with the messages in previous
steps
• e.g., 𝜋𝐼: uri1 should be same to the uri2

Identifier: binding parts of message patterns
- e.g., origin, uri1, uri2

13/18

Experimental setup
• To assess the security benefit and the compatibility of WPSE, OAuth 2.0 protocol

is evaluated on existing websites in the wild

• Crawler: automatically identify existing OAuth 2.0 implementations

• Specification: the most common use case is modeled, a protocol specification is
devised for each identity provider
• There is slight differences between identity providers in practice
• e.g., the use of the response_type parameter is mandatory at Google, but not at Facebook

and VK

List of OAuth 2.0
Identity Provider

Alexa Top 100k

Checks the presence of
OAuth 2.0 endpoints

Facebook (1,666 websites)
Google (1,071 websites)
VK (403 websites), etc.

Sampling

Final dataset:
30 websites

for each Facebook,
Google, and VK

Manual inspection

14/18

Security analysis
• The extension prevented the leakage of sensitive data on 4 different

relying parties

• In all cases, the violations are due to the presence of tracking or
advertisements libraries
• Such as Facebook Pixel, Google AdSense, Heap, and others

ticktick.com (RP)
-Embedding the Facebook

tracking library
User browser

Facebook

Google (IdP)

user credential

Redirect (w/ parameter authcode, state)

Request w/ Referer Header
(containing parameter authcode, state)

=

15/18

Security analysis
• 55 out of 90 websites have been found affected by the lack or misuse

of the state parameter

• 41 websites do not support it while 14 websites miss the security
benefit
• Using a predictable or constant string as a value

• The situation is caused by the IdPs not setting the parameters as
mandatory
• State parameter is recommended by Google and VK, and mandatory by

Facebook (according to their documentation)

16/18

Compatibility analysis
• The usage of WPSE did not impact in a perceivable way the browser

performance or the time to load webpages

• 81 websites were navigated flawlessly, but in 9 websites, the protocol
run were not able to be successfully completed
• 2 websites were related to the use of the Gigya social login provider
 Fixed by writing an XML specification for the Gigya

• 7 websites were because of the deviation from the OAuth 2.0 specification
 Not fixed; may introduce security flaws

17/18

Conclusion
• WPSE is the first browser-side security monitor to address the

security challenges of web protocols

• Given protocol specifications, WPSE enforces the web browser to
follow those security requirements at runtime
• i.e., protocol flows, secrecy, and integrity

• Existing OAuth 2.0 implementations show that the security benefits
and compatibility of WPSE

18/18

