[2024.10.15] Main Seminar

A Flushing Attack on the DNS Cache

USENIX Security 24’ Fall

Yehuda Afek*, Anat Bremler-Barr*, Shani Stajnrod

Tel-Aviv University*, Reichman University

Jungbum Lee

jblee@mmlab.ac.kr
UG
RN, NS5
vlﬁﬁl v Network Convergence & Secu Lab
\4"; .‘|\,I g ¥

M.
P

Contents

* Current trends in DNS amplification attack

* Background DNS resolving in depth

e Cache flushing attack and limitations

 Conclusion

2/23

Current Trends in DNS Amplification Attacks

Problem within Problem within
standard implementation
Deplete Deplete
machine power cache
RFC9471

3.1. Glue for In-Domain Name Servers

This document clarifies that when a name server generates a referral response, it MUST include all available
glue records for in-domain name servers in the additional section or MUST set TC=1 if constrained by message
size.

3/23

Current Trends in DNS Amplification Attacks (cont.)

x10+ x500+ \
iDNS tsuNAME ’ L DNS and TTL
OARC 15’ IMC 20’ ArXiv
x1600 x5600* 12MB/s*
NXNS NRDelegation| | FlushingAttack
Security 20’ Security 23’ Security 24’
I\ J

Y

Problem with BIND, UNBOUND, etc.

4 /23

DNS Basic

 DNS is a distributed database that stores some values (such as IP address) that map

domain names to the values
@ Ask .test zone]
&mple.test A?] OC o
P

example.test A? @
-} . X Mp.em cone |
< (o] < (o] ¢
S —
‘ 10.98.9.9 \

\

NO CACHE

/
|

12
>

5/23

Delegation and Referral in DNS

* To answer the resolver’s query, an authoritative nameserver can choose whether to
answer the question directly or delegate the answer to another nameserver

* The delegation is mostly driven by performance gains and enables integration with
third-party services

* Referral response is a multiple delegation response

* Motivated by fault-tolerance and managing latency

* Delegation has been a vulnerable attack vector in DNS

6/23

Glue records (after RFC 9471)

* DNS uses glue records to allow iterative clients to find the addresses of name servers
that are contained within a delegated zone

* Glue records are added to the parent zone as part of the delegation process and

returned in referral response

* Name server MUST include all available glue records for in-domain name servers

v; QUESTION SECTION:
‘www.foo.test. IN

»» AUTHORITY SECTION:

foo.test. 86488 IN NS nsl1.foo.test.

foo.test. 86488 IN NS ns2.foo.test.
- ADDITIONAL SECTION:

nsl1.foo.test. B6488 IN A 192 .68.2.1

ns2.foo.test. 86488 IN AAAA 26881 :db8::2:2

7/23

DNS Resolver Cache

* DNS resolver cache many answers including DNS RR types, domain names, IP

addresses, etc.

* There are two type of caches, benign cache and negative cache

* Benign cache saves successful resolution
* Negative cache saves failed resolution, such as NXDOMAIN, NODATA, time-out, etc.

* Cache is dynamically distributed, means the storage where benign cache uses, and
negative cache uses are integrated

* Benign cache has higher priority

Benign cache Negative cache

Garbage values

\.

J

Y
8 MB ~ 4GB

8/23

SLIST

e SLIST is a scratch pad memory for name servers and zone which the resolver is
currently trying to query

» SLIST keeps track of the resolver’s best guess about what to query next

Query? google.com. A

google.com. A 142.251.42.142 a.gtld-servers.net

a.root-servers.net b.gtld-servers.net
. NS e.root-servers.net. b.root-servers.net c.gtld-servers.net
com. NS c.gtld-servers.net. . c.root-servers.net -
google.com. NS ns3.google.conm. . m.gtld-servers.net

m.root-servers.net
e.root—-servers.net. A X.X.X.X

c.gtld-server.net. A X.X.X.X
ns3.google.com. A X.X.X.X

9/23

SLIST (cont.)

e SLIST is a scratch pad memory for name servers and zone which the resolver is

currently trying to query

» SLIST keeps track of the resolver’s best guess about what to query next

Query? google.com. A

google.com. A 142.251.42.142

. NS e.root-servers.net.
com. NS c.gtld-servers.net.

google.com. NS ns3.google.com.

e.root-servers.net. A X.X.X.X
c.gtld-server.net. A X.X.X.X
ns3.google.com. A X.X.X.X

SLIST

google.com.

com.

a.root—-servers.

~

m.root—-servers.

a.gtld-servers.

~

m.gtld-servers.

10/ 23

Why we need SLIST?

* To prevent redundancy and infinite looping

A.false.me. B.falso.mi

. [@wo
L

Q. fake.com. A

Resolver

Cnio
N0

v

fake.com
A.false.
B.falso.

A.false.
B.falso.

me
mi

me
mi

Benign Cache

NS
NS
NS

A
A

A.false.me
B.falso.mi
A.false.me

1.2.3.4
5.6.7.8

11 /23

Why we need SLIST? (cont.)

* To prevent redundancy and infinite looping

A.false.me. B.falso.mi

. [@wo
L

Q. fake.com. A

Resolver

Gy
(&

v

fake.com
A.false.me
B.falso.mi

A.false.me
B.falso.mi

Benign Cache

NS
NS
NS

A
A

A.false.me
B.falso.mi
A.false.me

1.2.3.4
5.6.7.8

SLIST

fake.com

A.false.me

B.falso.mi

N

12 / 23

SLIST and Cache

* The resolver fetches all name server information from the target server and checks

the connectivity to each server in parallel, storing the results in the cache based on
whether the servers are reachable

* Therefore, the resolver with SLIST relies heavily on cache

* Without cache, resolver should query all nameservers they met from root for each
query

:+ AUTHORITY SECTION: This is NOT resolved by glue record
com. NS a.gtld-servers.net.
com. NS b.gtld-servers.net.
com. NS c.gtld-servers.net.

;+ ADDITIONAL SECTION:

a.gtld-servers.net. A 192.5.6.30 Resolver traverse all this IPs in parallel

b.gtld_servers. het. A 192.33.14.30 - and check its reachability
c.gtld-servers.net. A 192.26.92.30

13 /23

Two Issues with Cache Management in Resolver

* There are no limits of the NS record number in a single domain to benign cache

* When the hard limit is reached, the resolver usually drops all requests

google.
google.
google.
google.

con
con
con
con

NS
NS
NS
NS

hs2.google.
hsl.google.
hsld.google.
hs3.google.

con
con
con
con

el.attack.
el.attack.
el.attack.

el.attack.
el.attack.

con
con
con

con
con

NS
NS
NS

NS

NS

c0001.del.
c0002.del.
c0003.del.

cld99.del.
c1500.del.

Cc
Cc
Cc

Cc
Cc

A google.com

NS c1483.del.c

NS c1482.del.c

NS c1481.del.c

NS c1480.del.c

14 / 23

NSCacheFlush Attack

el.attack.com A

e4.attack.com

40 bytes each
40 bytes * (1500 + 20) =~ 60KB

SERVFAIL

Authoritative NS

Resolver
@ el.attack.com A
>
Oc¢ «
Zonefile
/ Benign Cache Zonefile
el.attack.com NS c0001.del.c el.attack.com NS c0001.del.c
el.attack.com NS c0002.del.c el.attack.com NS c0002.del.c
el.attack.com NS c0003.del.c el.attack.com NS c0003.del.c
el.attack.com.hg c1500.del.c el.attack.com NS c1500.del.c
e2.attack.com NS cl1501.del.c e2.attack.com NS c1501.del.c
. e2.attack.com NS c1502.del.c

e2.attack.com NS c3000.del.c
USeRineroig——_r——g St 36O+l

15 / 23

CNAMECacheFlush Attack

Resolver

el.attack.com A @
>

O(C

F

SERVFAIL

Authoritative NS

el.attack.com A @
>

L

Zonefile

Zonefile

/ Benign Cache

el.attack.com CNAME e2.attack.
e2.attack.com CNAME e3.attack.
e3.attack.com CNAME eld.attack.
ely.attack.com CNAME e5.attack.

e98.attack.com CNAME e99.attack.

uceonix.crg A 22,128,201

conm
conm
conm
conm

conm

e3.attack.com CNAME eld.attack.com
eb.attack.com CNAME e6.attack.com

e98.attack.com CNAME e99.attack.com

16 / 23

Computational Load of Authoritative Name Server

 Computational load is relatively low

Resolver Authoritative NS
1.attack. A
el.attack.com R @ el.attack.com A R
<< o'_c <
SERVFAIL zOnefiIe
4
Intel(R) Xeon(R) CPU E5-2673
2.30GHz 2vCPUs
8GiB RAM
\

17 [/ 23

Result

* After a certain request rate builds up, the cache miss ratio suddenly increases

100%

® unbound

Cache size: 10MB

A bind

L

—8— 0ur Model

@ e o0

F Y

:

80%
A
=2 60% . .
= Predicted as Cache Hit
Q
-
[]
O 40%
®]
20%
A 2 Ak A 4
0% b—a—@— A A A P
1 10

100

. LR R .\ A
A t l‘ ““:“, t.

>

Predicted as Cache Miss

1000 10000

Attacker Request Rate / Benign Rate

18 / 23

Result (cont.)

* The request rate required for the attack to succeed increases proportionally to the

cache size

100%

80% °
Cache size: 100MB

ki 60% . .
p= Predicted as Cache Hit
<
o 40%
@]

20%

A
0% O—a—e—a 4 A4 4 4

® unbound

A bind —8—0ur Model

el S
>

10

1do

®
l‘..
A

1000

Attacker Request Rate / Benign Rate

A @
¢ .

9
A

A

Predicted as Cache Miss

10000

19 / 23

CacheFlush Mitigation — Create a hard limit!

* Bounding NS referral list
* Bounding the length of CNAME chains

Benign Cache Benign Cache

el.attack.com CNAME e2.attack.com
el.attack.com NS c0002.del.c e2.attack.com CNAME e3.attack.com
el.attack.com NS c0003.del.c e3.attack.com CNAME ed.attack.com

el.attack.com NS c0001l.del.c

el.attack.co CNAME .attack.com
e1.attack.c;E,ﬁ;:clsee.del.c
- - A 53 e98.attack.co .attack.com

usenix.org A 23.185.0.4 usenix.org A 23.185.0.4

NSCacheFlush Attack CNAMECacheFlush Attack

20/ 23

Limitation

» Attack rate should highly exceed original benign request
* If cache size is 1GB, attacker’s request rate should be 10,000 times higher than benign request

* Public DNS is highly distributed, it’s hard to attack specific query

GO gle DNS query survey X $ & Q

Al Images Videos News Shopping Web Books ¢ More Tools

10 queries per second.

arXiv
% hitps:/arxiv.org cs 4
Survey and Analysis of DNS Filtering Components ‘
X 10,000

by J Magnusson - 2024 — In this paper, we survey several techniques to implement and -
enhance the capabilities of filtering resclvers including response policy zones, threat ...

s USENIX .
6'0 https:z//iwww.usenix.org » atc20 » presentation » yang 3 100, OOO q U e rles pe r SeCO nd
A Deep Dive into DNS Query Failures 100’000’000 queries/s for attack

by D Yang - 2020 - Cited by 13 — In this paper, we perform the largest ever study into DNS
activity, covering 3B queries. We find that 13.5% of DNS queries fail, and this leads us to... /

21 /23

Conclusion

* BIND and UNBOUND were vulnerable to cache flushing attack

e Since DNS has had no restrictions on CNAMEs and NSs, there is no obvious choice but
to impose hard limits

* The pattern of using CNAME and NS is highly scattered

* For small name servers, a small amount of computing power can cause most queries
to cache miss

* University, company’s centralized resolver

* For large name servers, such as public resolver, it’s hard to succeed the attack

22 /23

Thank you

CNAME

e DNS uses CNAME record to offer canonical name associated with an alias name

CNAME CAN point to another CNAME record
CNAME CAN make unresolvable loops, while it is not recommended
MX and NS records must NEVER point to CNAME RR

NAME TYPE VALUE

_ _ example.com. MX © foo.example.com.
bar.example.com. CNAME foo.example.com. foo.example.com. CNAME host.example.com.
foo.example.com. A 192.0.2.23 host.example.com. A 192.0.2.1

24 / 23

NSCacheFlush Attack

el.attack.com A

Resolver

e4.attack.com

40 bytes each
40 bytes * (1500 ~ 60KB

—Z

SERVFAIL

@ el.attack.com A
>
Oc¢ «

Zonefile

Authoritative NS

/ Benign Cache

el.attack.com NS c0001l.del.
el.attack.com NS c0002.del.
el.attack.com NS c0003.del.

1.

c0001l.del.c A 1.2.3.4

c0020.del.c A 1.2.3.4
usenix.org A 23.185.0.4

o

o

~\
Hard limit
NRDelegation attack (23’)
. NXNS Attack (20’))

el
el
el

el
e2
e2

c0001.del.c A 1.2.3.4

Zonefile

.attack.
.attack.
.attack.

.attack.
.attack.
.attack.

conm
conm
conm

conm
conm
conm

NS
NS
NS

NS

NS
NS

c0001
c0002
c0003

c1500
cl501
cl1l502

.del.
.del.
.del.c

Nn N

.del.c
.del.
.del.c

N

25/ 23

	Default Section
	Slide 1: A Flushing Attack on the DNS Cache
	Slide 2: Contents
	Slide 3: Current Trends in DNS Amplification Attacks
	Slide 4: Current Trends in DNS Amplification Attacks (cont.)
	Slide 5: DNS Basic
	Slide 6: Delegation and Referral in DNS
	Slide 7: Glue records (after RFC 9471)
	Slide 8: DNS Resolver Cache
	Slide 9: SLIST
	Slide 10: SLIST (cont.)
	Slide 11: Why we need SLIST?
	Slide 12: Why we need SLIST? (cont.)
	Slide 13: SLIST and Cache
	Slide 14: Two Issues with Cache Management in Resolver
	Slide 15: NSCacheFlush Attack
	Slide 16: CNAMECacheFlush Attack
	Slide 17: Computational Load of Authoritative Name Server
	Slide 18: Result
	Slide 19: Result (cont.)
	Slide 20: CacheFlush Mitigation – Create a hard limit!
	Slide 21: Limitation
	Slide 22: Conclusion
	Slide 23: Thank you

	Appendix
	Slide 24: CNAME
	Slide 25: NSCacheFlush Attack

