Passban IDS: An Intelligent Anomaly-Based Intrusion Detection System for IoT Edge Devices

Mojtaba Eskandari, Zaffar Haider Janjua, Massimo Vecchio, and Fabio Antonelli OpenIoT Research Area, FBK CREATE-NET, 38123 Trento, Italy

IEEE Internet Of Things, 2020

Outline

- Introduction
- Passban IDS
 - Packet flow discovery
 - Feature extraction
 - Training and prediction
 - Action & Web manager
- Evaluation
- Conclusion

Introduction

 Internet of Things (IoT) is a constantly evolving umbrella of technologies aiming at connecting diverse devices and everyday objects

• Embracing such a paradigm shift in our daily lives increases the risk of data privacy breaches and cyber-security attacks

→ Various IDSs have been suggested about IoT

Major approaches for IDS

Signature based approach

- Identify attack using pattern (signature)
- Can only detect already-known attacks
- Attacks should have characteristics
- Increases of attack types →
 Increases of signatures → low performance
- Human experts are needed to study, analyze, and craft signatures

Anomaly based approach

- Attacks are identified by ML trained by benign traffic
- Can address limitations of signature based approach
- One data source can make a mixture of underlying varying behavior → Hard to model

IDS for IoT

- Signature based IDS is very hard to efficiently deployed
 - Unknown attacks cannot be detected
 - Various types of new attacks are introduced for IoT environment
 - IoT gateway is usually low-cost → Update for new signatures is difficult

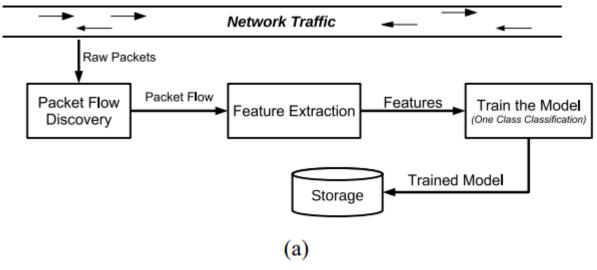
→ Anomaly based IDS is more suitable for IoT

Goals of Passban IDS

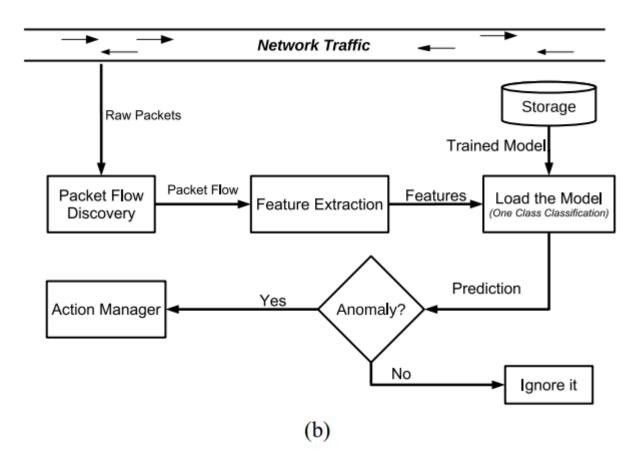
Ensure data protection near the IoT data sources

Scalability (in terms of new threats)

Reduce FP for satisfying detection accuracy requirement

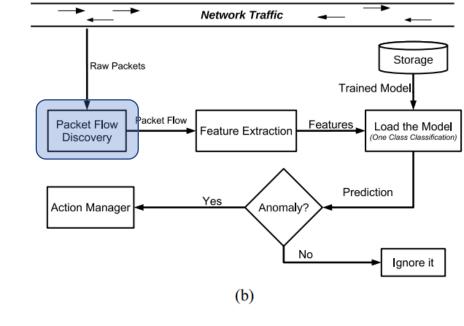

Contributions

Suggest a platform-independent anomaly based IDS (Passban) working on edge devices

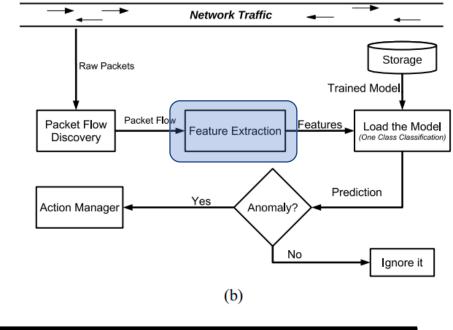

- Implement Passban in AGILE framework
- Deploy real IoT testbed, collect dataset, and evaluate Passban
- Pack Passban into a Docker container for public

Passban IDS

Overview

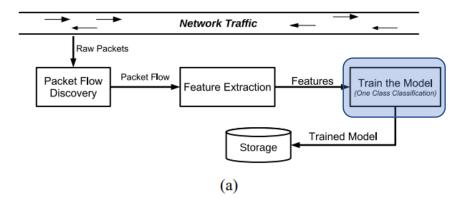


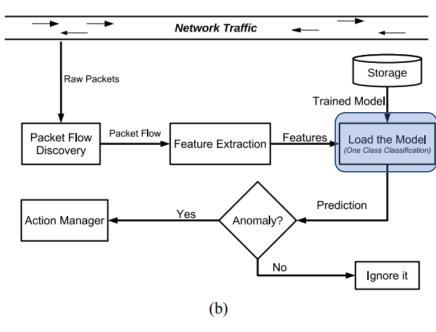
- Training phase (a)
 - Packet capture → Feature extraction →
 Train model → Save
- Prediction phase (b)
 - (Load model) → Packet capture → Feature extraction → Prediction → Action


Packet flow discovery

- Constantly observe network traffic
- Capture network raw packets
- Send them to feature extraction block

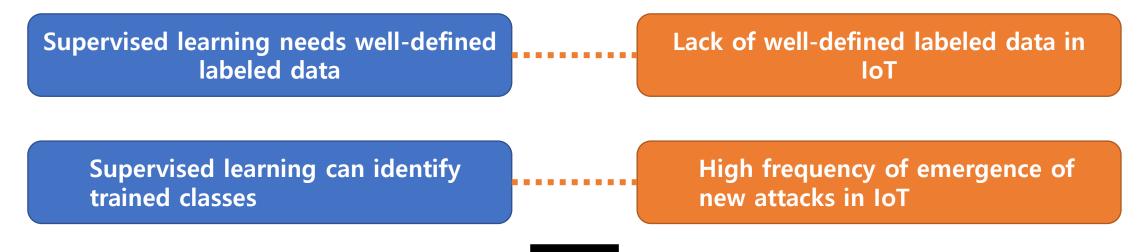
Feature extraction


- Calculate network flow statistics
- Build features to feed train/predict block



Туре	Features	Descriptions
Traffic volume	12 features: max_fpktl, max_bpktl, mean, min, sflow, etc	Size of largest packet (in forward/backword), mean/min packet size, number of bytes, etc
Packet statistics	4 features: sflow_fpackets, sflow_bpackets, total_fpackets, total_bpackets	Average number of packets, total packets
Time statistics	8 features: mean_active, mean_fiat, max, min, duration	Mean active time, mean time interval between two packets in forward, etc

Train/prediction


- During training phase
 - ML algorithm is trained to learn normality traffic
 - Trained model is stored in the local memory
- During prediction phase
 - Model is loaded from local storage
 - Predict captured flow as "anomaly" or "benign"
 - Anomalies are sent to Action manager

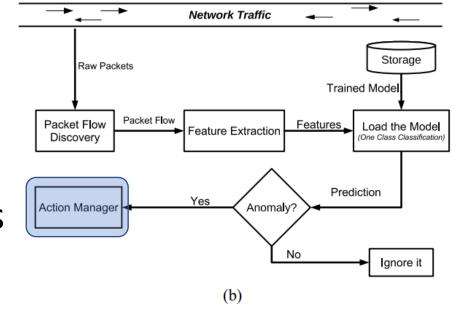
ML in Passban

Supervised learning is hard to be applied for Passban

Unsupervised learning is more suitable for Passban

ML in Passban: Isolation Forest

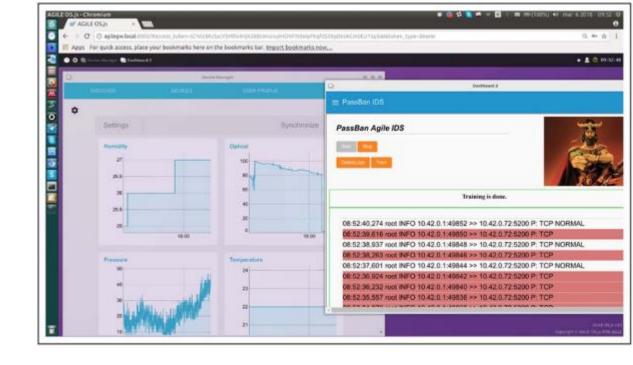
- Two unsupervised learning algorithm is used
- Isolation Forest (iForest)*
 - Anomalies are few and characterized by attribute values which are quite different from normal
 - Generate forest of data induced random trees
 - Each tree is built by recursively partitioning the instances until all the instances are isolated
 - → The instances having anomalies are represented by shorter paths in the tree


ML in Passban: Local Outlier Factor

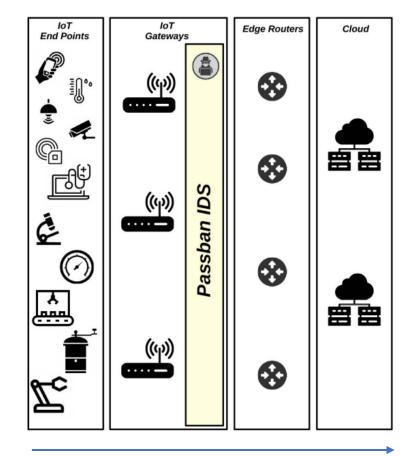
- Local Outlier Factor (LOF)*
 - Density-based method for identifying outliers
 - Density estimation is based on a comparison between distances measured of a point with its k-nearest neighbors
 - → Data points belonging to denser regions having similar density are considered normal
 - → Data points occurring in the lower density regions which are considered outliers

Action manager

 Take proper actions to traffic predicted as "anomaly" by prediction


- Several actions are defined
 - Log details about packets
 - Block the flow
 - Send notification to network administrator
 - Switch off critical devices

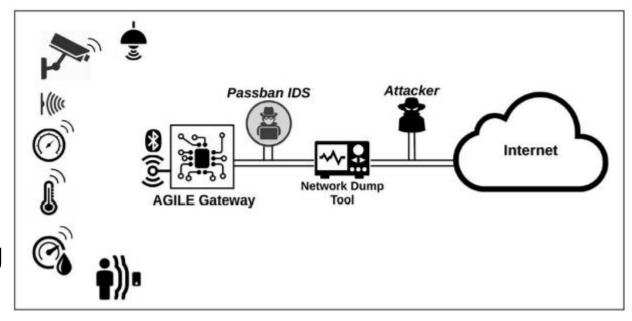
Web manager


User interface for network administrator

- Functions
 - Show status of the IDS
 - Start/stop IDS
 - Change phases (training/prediction)
 - Manage logs of anomalies

Analysis about Passban

- Passban gets advantage from 'locality'
 - Aggregation of multiple streams occurs at each level; IoT gateway, edge router, cloud
 - High levels may exhibit more generic characteristics, rather than device-specific characteristics
 - May reduce the performance of an IDS when detecting threats
- Passban limitation
 - 'Benign phase' is necessary, false positive, network change leads to new training phase, resource exhaust due to 'SYN flood'

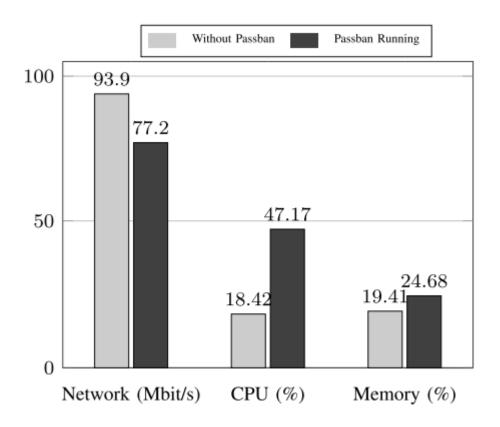

More resources

Device-specific information

Evaluation

Testbed setup

- IoT devices
 - Texas instrument BLE SensorTag endowed with
 - a) TMP007: Temperature sensor
 - b) BMP280: Altimeter/Air pressure sensor
 - c) OPT3001: Ambient light sensor
 - d) DHC1000: Humidity sensor
 - e) MPU-9250: 9-axis motion sensor
 - FosCam Fl8910W as WiFi IP Camera



Attacks towards IoT devices

- 4 types of attacks are introduced
 - Port Scanning
 - Enables reconnaissance on the target system to discover possible vulnerable points
 - HTTP Brute Force
 - Almost every IoT gateway provides a Web interface to interact with various IoT devices
 - Web interface is usually protected via a pair of username/password credentials
 - SSH Brute Force
 - SSH protocol is usually used by a system administrator to communicate with the gateway
 - SYN Flood
 - Try to consume enough server resources in order to make the system unresponsive to legitimate traffic
 - Especially harmful to IoT gateways

Resource utilization

- Memory usage
 - 24.68% when Passban is executing
 - 19.41% when it is not executing
 - Passban requires 54 MB
- Average CPU load
 - 47.17% when Passban is executing
 - 18.42% when it is not executing
- Network throughput
 - Raspberry Pi can handle max 93.9 Mb/s
 - With Passban, this bandwidth is reduced to 77.2 Mb/s

Performance evaluation

Attack	Technique	#Normal	#Attack	FP	TP	FN	TN	Precision	Recall	F1
Port Scanning	iForest	148	57	1	57	0	147	0.98	1	0.99
	LOF	148	57	10	52	5	138	0.84	0.91	0.87
HTTP Brute Force	iForest	106	36	2	35	1	104	0.95	0.97	0.96
	LOF	106	36	7	35	1	99	0.83	0.97	0.89
SSH Brute Force	iForest	870	389	9	370	19	861	0.98	0.95	0.96
	LOF	870	389	7	302	87	863	0.98	0.78	0.87
SYN Flood	iForest	117	31	2	27	4	115	0.93	0.87	0.9
	LOF	117	31	5	27	4	112	0.84	0.87	0.85

- LOF and iForest are able to detect all the tested attacks with satisfactory accuracies
 - iForest reaches always the best values in terms of both precision and recall, hence also in terms of F1: 0.99, 0.96, 0.96, and 0.90 for Port Scanning, HTTP Brute Force, SSH Brute Force, and SYN Flood, respectively

Conclusion

- Authors presented Passban, an intelligent anomalybased IDS purposely designed to be directly hosted and executed by a typical edge device
- Authors built an IoT testbed able to resemble a typical smart home automation environment
- Passban is evaluated against four common attacks (namely, port scanning, HTTP brute force, SSH brute force, and SYN flood)