TempoCode-IoT: temporal codebook-based encoding of flow features for intrusion detection in Internet of Things

Abdul Jabbar Siddiqui and Azzedine Boukerche University of Ottawa, Canada

Cluster Computing 2021

Outline

- Introduction
- Design
 - Overview
 - Feature extraction
 - Codebook generation
 - Learning and testing
- Evaluation
- Conclusion

Introduction

- Growing plethora of connected devices and things are reshaping the landscape of an Internet-of-Things (IoT)
- Due to the increasing diversity, novel threats and attack vectors are suggested

Importance

 Threats of IoT devices are harmful to not only device itself, but also human life and properties

 Attacks on smartcar, e-health devices are directly connected to human life

Attacks on smartcity infra, bank lead to losses of properties

→ Intrusion detection on IoT devices becomes more important

Codebook-based IDS

Transforming flow-based features into more discriminative representations

 Designing an ensemble of classifiers based on these to differentiate between benign and malicious flows

• The method is designed to serve in a centralized IDS, leveraging the compute and storage resources therein

Design

Overview

Packet capture → Feature extraction → Codebook generation → Training/Testing → Classifying

Overview

- Process of this work is common
 - Widely used concepts of feature extraction, machine learning and classifying
- Characteristics of this work are in "codebook generation"
 - Somewhat in ensemble learning

Packet capture

- This work uses public dataset only
 - No self-captured packet dataset

NBaloT and CICIDS2017 datasets are used

Feature extraction

- Features are already extracted (or selected) in dataset
 - Authors just utilized them

- Features examples
 - Flow Duration, packet Length (min, mean, stdev in forward and backward direction), subflow bytes (in forward direction), flow interarrival time (min, mean, stdev in forward and backward direction), active_min, active_mean

Codebook generation

 Only benign flows are used to generate codebook

- In each time window t_i , a clustering method such as KMeans is applied to learn N_{ct} key patterns as codewords to represent the benign traffic in t_i
 - N_{ct}: the number of codewords (the number of clusters)
- In short, they run nearest neighbor for all features in each window, centers become the codewords

Features for window t_i , N_{ct} =4

Ensemble training

 Each classifier in ensemble is trained on a random subset of the training dataset

- The prediction of each constituent classifier is then combined through voting to produce the overall classification output
 - Detailed procedure of voting is omitted in the paper
- Pros: Parallelism & Better generalization ability

Classifying

• Scoring is based on distance $TC_i = \{q_{t_i,k} | i = 0,...,N_T; k = 1,...,N_{ct}\}$

- bin $(q_{t_i,k})$ holds the distance of F_j from $cw_{t_i,k}$
- SVM is chosen as base classifier
 - A single multi-class SVM classifier is built by collecting many such binary classifiers, depending on the number of classes in the dataset

Evaluation

Dataset description – CICID2017

 Table 2
 Attack types in CICIDS2017 datasets

Attack type	Description
Bruteforce	Based on the FTP- and SSH-Patator tools. The attacker tries to gain access to content or documents via a hit and try method
Heartbleed	Targeted against OpenSSL-based Transport Layer Security (TLS) protocol
Botnet	A number of devices are compromised and exploited to carry out different attacks/operations. Ares-based Botnet
DoS/DDoS	Targeted against a network resource or service to make it unavailable for benign users. When many different devices are exploited (e.g. by a botnet), it is called DDoS. Tools used: GoldenEye, Slowloris, Hulk, Slowhttptest, Heartleech, LOIC
Web attack	Attacks like SQL Injection or Cross-Site Scripting (XSS), over the web, exploiting vulnerabilities in code
Infiltration attack	Internally originated attacks. Attacker exploits software vulnerabilities to setup a backdoor on victim devices to carry out various attacks such as portscan or IP sweep, etc. Tool: Metasploit, Nmap, portscan

Dataset description - NBaloT

 Table 4
 Attack types in NBaIoT dataset

Attack type	Botnet family	Description
Scan	Mirai and BASHLITE (Gafgyt)	Looks for vulnerable devices in the network
Junk	BASHLITE (Gafgyt)	Sends junk/spam data
COMBO	BASHLITE (Gafgyt)	Sends spam data; Opens connection to a given IP address and port
Flooding	Mirai	ACK, SYN, UDP, UDPplain (higher PPS, enabled by fewer options)
	BASHLITE (Gafgyt)	UDP, TCP
l ————————————————————————————————————		

ID	Device	#Benign	#Mirai	#Gafgyt
1	Danmini (doorbell)	40395	652100	316650
2	Ecobee (thermostat)	13111	512133	310630
3	Ennio (doorbell)	34692	N/A	316400
4	Philips B120N10 (baby monitor)	160137	610714	312723
5	Provision PT737E (security camera)	55169	436010	330096
6	Provision PT838 (security camera)	91555	429337	309040
7	Samsung SNH1011N (Webcam)	46817	N/A	323072
8	SimpleHome XC57-1002-WHT (security camera)	42784	513248	303223
9	SimpleHome XC57-1003-WHT (security camera)	17936	514860	316438

Effect of time window

Fig. 3 a Effect of t_{dur} on accuracy (correct classification rate of benign and malicious samples) and **b** processing time (per TempoCode-IoT vector)

- Shorter time window, higher accuracy, longer processing time
- 0.75 shows, however, there can be "overfitting"

Effect of # of centers (in codebook)

Table 6 Effect of N_{ct} and CSize (codebook size) on TempoCode-IoT classification scores

N _{ct}	CSize	Ben-Ben	Ben-Mal	Mal-Ben	Mal-Mal	Prec-Ben	Recall-Ben	F1-Ben	Prec-Mal	Recall-Mal	F1-Mal
5	45	345555	2813	2917	108394	0.9916	0.9920	0.9918	0.9747	0.9738	0.9743
10	90	346495	1873	2577	108734	0.9926	0.9946	0.9936	0.9831	0.9769	0.9800
15	135	346618	1750	2534	108777	0.9927	0.9950	0.9939	0.9842	0.9772	0.9807
20	180	346762	1606	2794	108517	0.9920	0.9954	0.9937	0.9854	0.9749	0.9801

- More codewords, higher accuracy, longer learning time
- 15 is the best, however, it shows that parameter can change depending on dataset

Performance results

- Benign v.s. DoS, web attack, brute-force attack
- Outliers
 - Heartbleed: only 11 samples
 - SQL injection & XSS: hard to classify, but the are "not benign"

Performance results

- Show high accuracy
- However, the results are "separated"
 - The authors made a classifiers for each attack type
- This means, it seems that hard to distinguish attack types in DDoS
 - And also as combines of web attacks, DoS, and DDoS

Conclusion

- Authors proposed TempoCode-IoT
 - A temporal codebook-based encoding of flow features
 - A novel feature transformation of network flow features based on capturing the key patterns of benign traffic in a learnt temporal codebook

 The experimental evaluations on recent realistic datasets (CICIDS2017 and NBaloT) proved the effectiveness of TempoCode-IoT representations