
Virtualized Congestion Control

Bryce Cronkite-Ratcliff1,2, Aran Bergman3, Shay Vargaftik3, Madhusudhan Ravi1,
Nick McKeown2, Ittai Abraham1, Isaac Keslassy1,2,3

1 VMware 2 Stanford 3 Technion

ABSTRACT
New congestion control algorithms are rapidly improving
datacenters by reducing latency, overcoming incast, increas-
ing throughput and improving fairness. Ideally, the operat-
ing system in every server and virtual machine is updated
to support new congestion control algorithms. However,
legacy applications often cannot be upgraded to a new op-
erating system version, which means the advances are off-
limits to them. Worse, as we show, legacy applications can
be squeezed out, which in the worst case prevents the entire
network from adopting new algorithms.

Our goal is to make it easy to deploy new and improved
congestion control algorithms into multitenant datacenters,
without having to worry about TCP-friendliness with non-
participating virtual machines. This paper presents a solu-
tion we call virtualized congestion control. The datacen-
ter owner may introduce a new congestion control algo-
rithm in the hypervisors. Internally, the hypervisors trans-
late between the new congestion control algorithm and the
old legacy congestion control, allowing legacy applications
to enjoy the benefits of the new algorithm. We have imple-
mented proof-of-concept systems for virtualized congestion
control in the Linux kernel and in VMware’s ESXi hypervi-
sor, achieving improved fairness, performance, and control
over guest bandwidth allocations.

CCS Concepts
•Networks → Transport protocols; Network architec-
tures; Programmable networks; Data center networks;

Keywords
Virtualized congestion control; algorithmic virtualization;
datacenters; hypervisors; ECN; DCTCP; TCP.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22–26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934889

Figure 1: 10 flows share the same bottleneck link: an
ECN-unaware flow (non-ECN), 8 ECN-enabled flows
(ECN), and a non-ECN flow augmented by vCC transla-
tion (virtual-ECN). The figure plots the probability den-
sity function, over many runs, of the average goodput of
each flow. The non-ECN flow is starved, reaching only
10% of the ECN goodput on average. After translation
to virtual-ECN, the average goodput is near identical to
that of ECN.

1. INTRODUCTION
The rise of hyperscale datacenters has driven a huge

growth in network communications. Because the large dat-
acenter companies control both ends of the internal connec-
tions, they are now deploying new congestion control al-
gorithms, either published (e.g., TCP with ECN, DCTCP,
TIMELY, etc.) [1–15] or proprietary, to reduce latency and
flow completion times for their traffic. This trend seems
likely to continue, as datacenter companies seek ways to
maximize utilization of their network, by customizing the
network’s behavior to best serve their large distributed ap-
plications.

Multitenant datacenters, in which many tenants lease and
share a common physical infrastructure to run their vir-
tual machine (VM) workloads, have a harder problem to
solve [7]: their tenants implement their own congestion con-
trol algorithms. Yet, the multitenant datacenter owner must

230

http://dx.doi.org/10.1145/2934872.2934889


Figure 2: High-level illustration of vCC (virtualized con-
gestion control). The vCC translation layer sits in the hy-
pervisor, where it translates the guest’s legacy congestion
control to a target congestion control algorithm.

ensure that all the algorithms still play well together in the
shared datacenter network, so as to meet agreed-upon SLAs.
Given the complex interplay between different congestion
control algorithms (just think how hard it is to make a single
new algorithm TCP-friendly [7, 16]), what is a multitenant
datacenter owner to do?

A few approaches come to mind. For instance, the mul-
titenant datacenter owner can strictly divide the bandwidth
among the tenants, giving each a fixed allocation [17]. How-
ever, this prevents statistical sharing of unused bandwidth.
Another approach is to modify all the datacenter switches
and tweak the fairness rules between tenants at each switch,
for example by implementing separate queues or applying
different marking thresholds within the same queue [7, 16].
Unfortunately, as the number of tenant algorithms increases,
this approach becomes harder to deploy while still guar-
anteeing fairness. Instead, we adopt a different approach,
taking advantage of the fact that all traffic passes through
hypervisors controlled by the multitenant datacenter owner.
What if a translation layer in the hypervisors ensured that
the whole datacenter uses a single best-of-breed congestion
control algorithm, while giving the illusion to each of the
VM guests that it keeps using its own congestion control al-
gorithm? (as illustrated in Figure 2.) In other words, the
guest congestion control algorithm is an overlay algorithm,
while the hypervisor translates it (transparently) to the un-
derlay algorithm used in the datacenter network. We call
this approach virtualized congestion control, or vCC.

A common manifestation of the problem we are trying to
solve is when a legacy application runs on a legacy guest
VM operating system (OS) that uses an old TCP version
(e.g., an ECN-unaware TCP NewReno). The application has
been functioning correctly for years, with little or no main-
tenance, but has recently been moved to the cloud. If other
VMs are using more modern (e.g., ECN-aware) congestion
control algorithms, they can starve the older application’s
traffic, as seen in Figure 1.1

1The data presented here represents 140 runs of the exper-
iment. Each run lasted 37 seconds; the first 5 and last 2
seconds were not included in the goodput average to avoid
experiment start-up and tear-down effects. Each of the 10
senders is connected to a single switch, which is connected
to a single receiver by a single (bottleneck) link. All links
have a bandwidth of 10 Mbps and a delay of 250 µs, so the

It is frequently impractical to port the old application to a
newer OS, and out of the question to force new applications
to use outdated congestion control algorithms. Our approach
solves this problem by allowing both types of applications
to enjoy the benefits of ECN. As shown in Figure 1, while
a non-ECN TCP flow can get starved when running along-
side many ECN flows, its virtual-ECN augmentation with
our vCC translation layer provides significantly increased
fairness. Specifically, in this case, the vCC translation layer
in the hypervisor (a) modifies the TCP header fields of the
sent packets to enable ECN support in the underlay; (b) upon
receiving an ECN congestion notification, decreases the re-
ceive window to make the overlay TCP guest sender reduce
its pace and behave as if it were ECN-aware; and (c) modi-
fies the TCP header fields of the ACK packets to mask con-
gestion notifications in the overlay.

The longer-term goal of our vCC datacenter solution is
to be able to introduce a new best-of-breed underlay con-
gestion control algorithm that is implemented in the hy-
pervisor and is decoupled from the congestion control al-
gorithm in the overlay guest OS. The new underlay algo-
rithm would not need to limit itself to be TCP-friendly or
legacy-friendly, and therefore may be even more efficient
than existing algorithms in multitenant datacenters. This
vCC architecture should seamlessly support arbitrary legacy
guest OSes and congestion control algorithms. The soft-
ware implementation of vCC at the hypervisor allows update
of the datacenter-wide congestion control algorithm without
changes in the guest VMs. Finally, since each hypervisor can
determine the application and tenant that generated each of
the hypervisor flows, vCC can implement congestion control
algorithms that generalize fairness among flows to fairness
and resource allocation among both tenants and applications.

Fundamentally, we view our problem as an instance of
a concept that we denote algorithmic virtualization. While
resource virtualization is about sharing a common resource
and making each guest believe that it keeps using the re-
source privately, algorithmic virtualization is about imple-
menting a common algorithm while making each guest be-
lieve that it keeps using its private algorithm. In our setting,
we provide an algorithmic virtualization of congestion con-
trol.2 The hypervisor implements a common best-of-breed
congestion control algorithm while allowing each guest to
keep using its private legacy congestion control algorithm.
Formally, a congestion and flow control algorithm is a func-
tion from a sequence of input events (e.g., ACKs or receive
window sizes from the network, or new data from the appli-
cation layer) to a sequence of output events (releasing pack-
ets to the network). Given an input sequence x, we define our
target output f(x) as the output obtained by the target un-
derlay datacenter congestion control algorithm f . The goal

round-trip time (RTT) is 1 ms. ECN and non-ECN flows rely
on TCP NewReno. The virtual-ECN flow was provided by
our Linux vCC translation layer, described in Section 3. The
switch’s port connected to the receiver was configured with
the RED1 parameter presented in Table 1.
2Fibbing can be seen as another recent example of algorith-
mic virtualization in the routing layer [18].

231



of our hypervisor translation layer T is to map input x into
T (x) so that the private guest overlay congestion control al-
gorithm g applied to the modified input T (x) yields the same
target output, i.e.,

g(T (x)) = f(x). (1)

In this paper, we propose to add a translation layer at
the hypervisor that will virtualize the congestion control.
While the guest-VM legacy applications will continue to use
their legacy TCP implementations, the hypervisor will trans-
late this legacy TCP into a newer congestion control algo-
rithm under-the-hood. As a result, the hypervisor can pro-
vide a large set of benefits (e.g., ECN awareness, Selective
ACK, smaller timeouts, etc.) to all legacy applications. It
will ensure that all datacenter applications are afforded the
same benefits, resulting in similar expected performance and
therefore in increased fairness. In particular, our contribu-
tions are as follows:
Techniques. In Section 2, we consider a wide range of
techniques that the hypervisor can implement, and discuss
the tradeoffs between their implementation complexity and
the potential benefits that they can provide. For instance,
an algorithm that allows the hypervisor to directly modify
the guest memory essentially enables it to replace the whole
networking stack, but at the cost of a complex implementa-
tion. Likewise, by breaking a TCP connection into several
sub-connections, a TCP proxy-like [19, 20] solution can im-
plement nearly any congestion control algorithm, but may
violate TCP end-to-end semantics by acknowledging pack-
ets that were not received by the destination receiver.

We also suggest more lightweight approaches that provide
a more limited set of benefits. For example, if the hypervisor
can update the receive window field in ACKs, then we show
that it can provide ECN-like or DCTCP-like properties to an
ECN-unaware TCP congestion control. In fact, in specific
cases, we prove that it can exactly emulate either ECN or
DCTCP.
Fairness in mixed-ECN environments.3 In Section 3,
we show that a minority of non-ECN legacy flows can get
starved by a majority of ECN flows. This is in part because
when a switch buffer becomes congested, packets from the
ECN flows continue to enter the buffer for at least an RTT,
keeping the buffer congested. As a result, the switch may
drop long sequences of non-ECN packets, causing timeouts
in non-ECN flows.

We subsequently demonstrate that fairness can be
achieved by using our Linux-based vCC translation layer to
make non-ECN flows ECN-capable. In addition to restor-
ing fairness, we provide the benefits of ECN to the non-ECN
flows, i.e., achieve high link utilization without dropping and
retransmitting packets.
Dynamic hypervisor-based TCP bandwidth sharing. In
Section 4, we present a proof-of-concept VMware ESXi
vSwitch implementation of the vCC translation layer. We
show that this vCC layer is capable of dynamically throttling

3All of our Linux code and experimental settings are pub-
licly available on Github [21].

traffic using the TCP receive window, and therefore provides
preferential treatment to certain applications without queue-
ing or dropping packets in the network.
Discussion. In Section 5, we discuss the architectural road-
blocks to the implementation of our vCC solution in data-
centers.

2. HYPERVISOR TRANSLATION
TECHNIQUES

In this section, we look at several available TCP modi-
fication techniques that may be used in our vCC architec-
ture. These techniques are roughly ordered from the most to
least intrusive. The first two techniques are specific to hy-
pervisors, while those following can also be used in network
edge middleboxes, including several existing techniques that
were proposed in the literature to regulate the rate of TCP
flows [22–26]. In this paper, we focus on the simpler and
least intrusive techniques, since they are the most appealing
and practical to implement.

Additionally, we explain the drawbacks of each technique,
including how each may violate networking architecture
principles. Not all lies are created equal: breaking the end-
to-end principle can be considered more severe than merely
reducing the receive window.
Write into guest memory. Modern virtualization tech-
niques such as active memory introspection [27, 28] and in-
dustry products such as VMware’s VMSafe [29] enable the
hypervisor to securely monitor a guest VM by having com-
plete visibility over its raw memory state, and write into this
memory when needed. Therefore, the hypervisor could di-
rectly modify the congestion control algorithm in the guest
by writing the desired TCP parameters in the corresponding
guest memory and registers.
Example. Assume we want to add a full modern congestion
control stack to an old guest VM. Then the hypervisor could
inject code in the guest as if it were malware with unlimited
memory access.
Cons. Tenants may expect stronger VM isolation guaran-
tees and not accept that the hypervisor writes into the VM
memory, even for the purpose of improving performance. In
cases where both the hypervisor and the guest VM control
the networking stack, writing into memory may also slow
down the VM because of the need for keeping consistency
and ensuring synchronization between the write operations.
Read from guest memory. As above, the hypervisor may
access the guest memory using guest introspection. How-
ever, by avoiding memory writes, it only monitors the mem-
ory and does not need synchronizations.
Example. This white-box solution makes the guest parame-
ters transparent to the hypervisor translation layer. It could
provide access to the congestion window without the need to
maintain state to track it in the hypervisor.
Cons. Again, tenants may not accept that the hypervisor gets
a sneak peek inside their VMs. Also, when the hypervisor
accesses the guest memory instead of keeping an internal
state machine, it adds processing and communication delays.
Split connection. The split-connection approach breaks a

232



TCP connection into several sub-connections, e.g., using a
TCP proxy [19,20]. It can acknowledge packets to the guest
VM at some desired rate, then send them on the datacen-
ter network using the desired target congestion control algo-
rithm.
Example. This black-box solution functions as a pipe, and
can implement nearly any congestion control algorithm. For
instance, to implement MPTCP, the hypervisor can quickly
prefetch packets from the guest VM at a high rate, then send
them to the destination hypervisor using several paths.
Cons. In addition to requiring many resources for buffer-
ing packets, this solution goes against TCP end-to-end se-
mantics. For instance, a barrier-based application may be-
lieve that all its packets were ACKed, and advance to the
next phase, while they were not actually received, potentially
causing errors in the application.
Buffer packets. The hypervisor translation layer can buffer
in-flight packets, e.g., to be able to resend them without in-
forming the guest [20, 30].
Example. In order to solve TCP incast, it can be useful to
reduce the retransmission timeout value RTOmin. vCC can
buffer in-flight packets and retransmit according to its own
RTOmin buffer, even when the guest OS does not support
the desired value or does not support changing the RTOmin
at all.
Cons. The hypervisor needs to manage packet buffers. Gen-
erally, packet buffers may also increase latency when they
are used to store packets coming in too quickly (instead of
copies of sent packets). Large buffers significantly increase
the memory footprint of vCC.
Buffer ACKs. The hypervisor can similarly buffer received
ACKs [23–25]. If an ACK is piggybacked on data, the ac-
knowledged sequence number is reduced and the remaining
bytes to acknowledge are later sent as a pure ACK.
Example. The hypervisor can pace ACKs to make TCP less
bursty.
Cons. The hypervisor needs to manage ACK buffers. It may
also increase latency when ACKs are delayed.
Duplicate ACKs. The hypervisor can duplicate and resend
the last sent ACK to force the guest to halve its congestion
window.
Example. In case of TCP incast, the hypervisor can force a
fast retransmit by sending three duplicate ACKs.
Cons. Beyond the need to keep the last ACK, this tech-
nique may also violate TCP semantics4. For instance, send-
ing three ACKs on the last outstanding packet means that
three additional packets have been received, which cannot
happen.
Throttle the receive window. The hypervisor can decrease
the receive window [22, 23, 25] to force the guest to have
fewer outstanding packets, since the number of packets in
flight is upper-bounded by the minimum of the congestion
and the receive windows. Therefore, the advertised receive
window could follow the target congestion window to make

4Although it does not seem to directly go against RFC
5681 [31], which mentions the possibility of the replication
of ACK segments by the network.

the guest adapt to this target.
Example. The hypervisor can implement ECN or DCTCP.
Specifically, upon explicit congestion notification, the hy-
pervisor translation layer decreases the receive window that
it sends to the guest, without forwarding the explicit conges-
tion notification itself (see experiments in Section 3).
Cons. This technique can make the congestion window
meaningless, since it relies on the receive window to bound
the number of in-flight packets. Also, a delicate point to note
is that the receive window should not be decreased to less
than the current number of in-flight packets. This may con-
flict with common implementations of the TCP buffer man-
agement. Therefore, the hypervisor needs to manage a grad-
ual decrease while closely monitoring the connection state.
Finally, a significant shortcoming is that while the technique
helps make TCP less aggressive, it cannot make it more ag-
gressive. For that, we would need to rely on a heavier tech-
nique, such as a split connection.
Modify the three-way handshake. The hypervisor can
change the options that are negotiated when setting up the
connection.
Example. The hypervisor can modify the negotiated MSS, or
enable timestamps. This technique is also needed for several
of the above techniques, e.g., to enable ECN support (see
experiments in Section 3).
Cons. The technique can barely help for most practical ben-
efits without additional techniques.

These techniques can translate the congestion control
most accurately when the hypervisor knows the specific OS
version and congestion control algorithm. In some cases, it
may be straightforward to detect these automatically either
by packet inspection, VM metadata, guest introspection, or
other communication with the guest. However, if the hy-
pervisor either does not know or does not want to trust the
information [32], it could simply limit the sender; e.g., when
applying the receive window throttling technique, it could
drop anything beyond the allowed receive window.

In addition, note that these techniques can be imple-
mented either on a single side of the flow (i.e., receiver
or sender), yielding a virtual-to-native communication, or
on both sides, yielding a virtual-to-virtual communication.
When the guest already implements the target modern con-
gestion control algorithm, vCC can either tunnel its traf-
fic transparently, or still translate the traffic to make sure it
obeys the exact same protocol implementation as other trans-
lated vCC traffic.

Figure 3 illustrates how a combination of the three-way
handshake modification and the receive window throttling
techniques can help provide virtual-ECN benefits to non-
ECN TCP traffic (we later implement a proof-of-concept of
this solution in Section 3). The vCC translation layer in the
hypervisor first uses the three-way handshake modification
technique: in Figure 3(a), it modifies the TCP header fields
of the sent packets to enable ECN support in the underlay.
Next, while vCC only sets the ECT bit in the IP header of
outgoing data packets and forwards incoming ACKs trans-
parently (Figure 3(b)), it uses the receive window throttling
technique upon congestion. As shown in Figure 3(c), upon

233



SYNACK SYNACK+ECE

Update Window
& State Machine

Hypervisor

SYN SYN+ECE+CWR

ACKACK

Data Data + ECT

ACK+ECEACK, RWIN

Data Data+CWR

Guest

Update Window
& State Machine

vCC
Translation Layer

Network

(a)

(b)

(c)

Figure 3: Interactions of the vCC translation layer in the
hypervisor with TCP traffic. From top to bottom: (a)
Connection negotiation, where the translation layer en-
ables the ECE and CWR flag in the SYN packet to indi-
cate ECN support, but hides the ECE field in the return-
ing SYNACK; (b) normal data packets get their ECT bit
set in the IP header and ACKs pass through the transla-
tion layer unchanged. The translation layer updates its
internal state as data packets and ACKs pass through;
(c) when an ACK with ECE bit is received, the transla-
tion layer masks the ECE bit, modifies the RWIN in the
TCP header, and sets CWR on the next outgoing packet.

receiving an ECN congestion notification, it decreases the
advertised receive window to force the overlay TCP guest
sender to reduce its pace and behave as if it were ECN-
aware. It also modifies the TCP header fields of the ACK
packets to mask congestion notifications in the overlay. Note
that we assume that the receiver either is ECN-enabled, or
also has a vCC translation layer. In addition, in all these
cases, we need to recompute the checksum when the fields
change. We can do so by looking at the changed bytes only.

Formally, when using the three-way handshake and re-
ceive window techniques, we are able to prove that we can
exactly emulate ECN and DCTCP (where emulation is de-
fined as in Equation (1) in the Introduction). We need two
major assumptions. First, we assume that all the processing
and communication times within the guest and hypervisor
are negligible. Second, we build a TCP NewReno state ma-
chine that is based on RFC 5681 [31] and RFC 6582 [33]
and assume that the guest follows this state machine. We do
so because our proof depends on this state machine, and we
found that different OSes and even different OS versions can
follow different state machines even for TCP NewReno. We
can then prove the following emulation theorems:

THEOREM 1. The translation layer can exactly emulate
an ECN-aware TCP NewReno protocol given a non-ECN
TCP NewReno guest.

THEOREM 2. The translation layer can exactly emulate
DCTCP given a non-ECN TCP NewReno guest.

The full formal proofs of these two theorems are available
online [21]. We gained two insights on full emulation when

writing the proofs. First, the proofs strongly rely on the fact
that given the same sequence of inputs (e.g., ACKs), ECN
and DCTCP are surprisingly less aggressive than non-ECN
TCP, in the sense that their resulting congestion windows
will never be larger. For instance, if an explicit congestion
notification arrives at an ECN or DCTCP sender, it may re-
duce its congestion window, while we assume that the noti-
fication should be ignored by a non-ECN TCP sender. The
second insight is that it is much easier to prove full emulation
when the timeouts are simultaneous in the state machines of
the guest and of the hypervisor translation layer. This is why
we assume negligible processing and communication times.

We believe that we could generalize these theorems to
more complex translations by concatenating simpler trans-
lations in the vCC translation layer: e.g., we could trans-
late TCP NewReno with ECN to DCTCP by concatenat-
ing (a) TCP NewReno with ECN to TCP NewReno with-
out ECN (simply modify the three-way handshake); and (b)
TCP NewReno without ECN to DCTCP (as shown above).

3. EVALUATION: SOLVING ECN UN-
FAIRNESS

In Sections 3 and 4, we show how a practical implementa-
tion of vCC can improve the performance and fairness of the
network. We implement vCC in two distinct environments.
The first implementation is realized at the edge of the Linux
kernel TCP implementation. We demonstrate that vCC can
help address unfairness between ECN and non-ECN traffic
in this Linux environment. All experiments in this Linux
vCC system are carried out with Mininet [34] for repro-
ducibility. Our experiments use a virtual machine running
Ubuntu 14.04 with Linux kernel version 3.19, except for
the experiments with 1 Gbps links, which were performed
using Mininet on a native Ubuntu 14.04 with Linux kernel
version 3.13. We set TSO (TCP Segmentation Offloading)
off in all Mininet experiments, because there is no real NIC
within Mininet to implement TSO. The CPU and memory
were never a bottleneck in all experiments.

The second environment is a proof-of-concept system in
the VMWare ESXi hypervisor’s vSwitch. We illustrate in
Section 4 how vCC can provide bandwidth sharing in this
hypervisor environment.

3.1 ECN Unfairness
ECN allows flows to react to congestion before any data

has been lost [35]. ECN can be a valuable tool to increase
network performance, but it has not been widely supported
in operating systems until recently [36]. Thus, legacy guests
in a datacenter may not support ECN. Unfortunately, a lack
of ECN support can cause such legacy systems to suffer. Fig-
ure 1 shows that, even across many dozens of runs (140 in
this case), there is consistent starvation of non-ECN flows.

We first run an experiment to analyze the unfairness be-
tween ECN and non-ECN flows, for various numbers of
ECN and non-ECN flows. 10 senders are connected through
a switch to a single receiver. To demonstrate the ability
of vCC-augmented guests to interact with any guest in a

234



(a) 9 non-ECN vs. 1 ECN flows (b) 5 non-ECN vs. 5 ECN flows (c) 1 non-ECN vs. 9 ECN flows

Figure 4: Unfairness between ECN and non-ECN flows, given a constant total number of 10 flows going through a
shared 100 Mbps bottleneck link. As the ratio of ECN to non-ECN flows increases, the non-ECN flows suffer from
increasing starvation and can send fewer and fewer packets.

(a) 9 non-ECN vs. 1 ECN flows (b) 5 non-ECN vs. 5 ECN flows (c) 1 non-ECN vs. 9 ECN flows

Figure 5: Repeated unfairness test between ECN and non-ECN flows with a 1 Gbps bottleneck link.

virtual-to-native communication, we set the receiver to be
a simple native Linux guest without vCC. As a result, it can
be seen as a non-ECN receiver for non-ECN flows, and an
ECN receiver for ECN and virtual-ECN flows. All links
have a bandwidth of 100 Mbps and a delay of 0.25 ms, so
the RTT is 1 ms. The switch queue uses RED with parameter
set RED1 as detailed in Table 1. We use TCP NewReno as
the congestion control algorithm in all our experiments. We
measure the goodput of long-lived TCP flows, using iPerf
as the traffic source and TShark for capturing packets and
measuring statistics. Each datapoint represents the average
goodput over a second for a single flow.

Figure 4 demonstrates the unfairness between ECN and
non-ECN flows by plotting the time-series of their goodput.
It shows that while the ECN flows fairly share the bottleneck
link among themselves, the non-ECN flows can become sig-
nificantly starved. The unfairness grows as ECN becomes
more widespread and the ratio of ECN flows to non-ECN
flows increases. This unfairness points out a curse of legacy:
as applications increasingly adopt ECN, the holdout legacy
applications become increasingly starved. Limited unfair-
ness between ECN and non-ECN TCP flows was known
given equal numbers of flows in each group [37]. However,
the large impact of a plurality of newer ECN guests on a

Parameter
Value

RED1 RED2 RED3
REDmin 90000 30000 30000
REDmax 90001 90000 90000
REDlimit 1M 400K 400K
REDburst 61 55 55
REDprob 1.0 0.02 1.0

Table 1: RED Parameters used in the experiments.

few non-ECN legacy guests appears to be new. To address
this issue, it is possible to design alternative switch mark-
ing schemes that would favor legacy applications instead.
However, ensuring fairness with legacy applications appears
quite challenging.

We have also repeated this experiment with higher-rate
links to emulate a datacenter environment more closely.
Specifically, in this setting we use 1 Gbps links, a delay of
0.025 ms (i.e., RTT is 100 µs), an RTOmin of 20 ms (instead
of the default 200 ms) and RED parameter set RED1 from
Table 1. The results are presented in Figure 5. The same
trend is evident.

We next analyze the impact of different ratios of ECN to

235



(a) 10 Mbps links (b) 100 Mbps links

Figure 6: Unfairness between ECN and non-ECN flows for several flow-type mixes and RED parameter sets, given a
constant number of 10 flows. In all parameter sets, the unfairness becomes larger when there are fewer remaining
non-ECN legacy flows.

(a) 10 Mbps links (b) 100 Mbps links

Figure 7: Average goodput ratio with varying values of REDmin, given 10 senders. Increased numbers of ECN flows
lead to starvation of non-ECN flows.

non-ECN flow numbers and of various RED parameter sets
(Table 1) on this ECN unfairness. The RED1 parameter set
emulates a hard threshold AQM, where packets are dropped
for non-ECN flows once the queue occupancy exceeds a cer-
tain threshold (REDmin), in a similar way to the AQM de-
scribed for DCTCP [1]. The REDburst parameter is set to
the minimum allowed value in tc-red for RED1 parameters.
RED2 is the recommended setting for RED in the tc-red man
page example. RED3 is a modification of RED2 (modified
REDprob) to test a more aggressive marking/dropping pol-
icy.

Figure 6 plots the ratio of the mean non-ECN flow good-
put to the mean ECN flow goodput, i.e., a measure of this

unfairness, as a function of the number of ECN flows, given
a total of 10 flows. It illustrates how for all tested parame-
ter sets, introducing even a small number of ECN flows into
the mix breaks fairness between ECN and non-ECN flows.
Moreover, when there is only one non-ECN flow left out of
the 10 flows, its goodput is at most 45% of the goodput of
the ECN flows.

Figure 7 explores how modifying the REDmin param-
eter in the RED1 parameter set affects fairness. We set
REDmax = REDmin + 1, and set REDburst to the mini-
mum allowed by tc-red. The figure depicts the goodput ra-
tio for different values of REDmin. In general we see that
as the proportion of ECN flows in the mix increases and

236



Figure 8: Histogram of time between consecutive ac-
knowledgments sent by the receiver, divided into 100 ms
bins, given a single non-ECN flow competing with 9 ECN
flows on a 100 Mbps link. A representative ECN flow is
plotted along with the non-ECN flow.

as REDmin decreases, the unfairness worsens and the non-
ECN flows suffer from increasing goodput loss.

What is causing this unfairness? Figure 8 presents a
100 ms binned histogram of the time between consecutive
acknowledgments sent by the receiver to a non-ECN and to
an ECN flow, where the non-ECN flow is competing with 9
ECN flows on a 100 Mbps link using RED1 parameters. The
non-ECN flow suffers from repeated retransmission time-
outs, as seen by the 200 ms and the 600 ms latencies. We
found two dominant factors for these repeated timeouts:
Queue length averaging. Consider a state in which the av-
erage queue length measured by the switch grows beyond
REDmax. It may remain above REDmax for a few RTTs
due to the moving exponential averaging of the queue length.
Meanwhile, every incoming packet of the non-ECN flow is
discarded, causing the sender to time out waiting for ACKs
on the dropped packets. Note that in this scenario fast re-
transmit is often not sufficient to save the sender’s window,
because the fast-retransmitted packets are dropped as well.
After such a timeout, the non-ECN sender returns to slow-
start, which further decreases its ability to recover due to the
small number of duplicate ACKs at its disposal in a case
of additional drops. In contrast, the packets of an ECN-
capable sender are marked and not dropped. Upon receipt
of an ACK-marked ECE, the sender halves its window and
continues in congestion avoidance, without losing a packet
or experiencing a timeout.
ECN to non-ECN flows ratio. Why does the unfairness
to non-ECN flows become more severe as the proportion of
ECN flows increases? Assume the switch buffer becomes
congested, i.e., crosses the marking threshold beyond which
ECN packets are marked and non-ECN packets are dropped.
Then packets from the ECN flows continue to enter the

Figure 9: Send window time series for a virtual-ECN
flow.

buffer for at least an RTT, potentially keeping the buffer con-
gested. As a result, the switch may drop long sequences of
non-ECN packets, causing timeouts in non-ECN flows. This
effect is particularly pronounced with a higher proportion of
ECN flows, which typically leads to a higher ECN traffic
rate. As a result, it will take longer to drain the queue below
the marking threshold as more ECN traffic keeps arriving,
and therefore may cause a longer congestion period.

3.2 Receive-Window Throttling
In order to address this unfairness problem, we propose

using the vCC translation layer to provide ECN capabili-
ties to the non-ECN flows. We transform non-ECN flows
from a guest to virtual-ECN flows that take advantage of
ECN, using receive-window throttling in the vCC transla-
tion layer. To demonstrate this, we configure one sender to
send traffic through a switch to a receiver. The sender uses
virtual-ECN provided by the vCC translation layer (wherein
the ECE bits are hidden from the guest to simulate ECN-
ignorance). The switch is configured with the RED1 pa-
rameter set from Table 1. The sender-to-switch link has a
bandwidth of 12 Mbps, while the switch-to-receiver link has
a bandwidth of 10 Mbps. The delay of each link is 250 µs
(i.e., RTT = 1 ms). The system is given 5 seconds to stabilize
before data is collected for 12 seconds.

Figure 9 depicts the send window for the vCC experiment
as reported by the tcp_probe kernel module. We can observe
the familiar sawtooth pattern that would otherwise be seen in
the congestion window. In our Linux implementation, when
the receive window was the limiting window, the congestion
window stayed larger than the receive window for the entire
experiment, rendering the congestion window meaningless.
Thus, modulating the receive window modulates the send
window of the guest directly, and the resulting traffic flows
are very similar. We have therefore created a virtual-ECN
flow.

To demonstrate that indeed we get the ECN benefit of

237



(a) 10 non-ECN flows (b) 10 ECN flows (c) 10 virtual-ECN flows

Figure 10: Total retransmission throughput for (a) 10 concurrent non-ECN flows sharing a 10 Mbps link, compared to
the same experiment with (b) 10 concurrent ECN flows, and (c) 10 concurrent virtual-ECN flows.

(a) 9 ECN flows and one non-ECN flow (b) 9 ECN flows with one virtual-ECN flow

Figure 11: 9 ECN flows share a 10Mbps bottleneck with either (a) one non-ECN flow; or (b) one virtual-ECN flow.
(a) The non-ECN flow goodput is only 14.2% of the average goodput of the ECN flows. The fairness index is 0.921.
(b) When virtual-ECN is used, the average goodput of the virtual-ECN flow is 103.8% of the average ECN flow goodput,
and the fairness index is 0.994.

reduced retransmissions when using virtual-ECN, we run
an experiment with 10 identical senders connected with
10Mbps links to a single receiver through a single switch.

Figure 10(a) illustrates that when using only non-ECN
flows, some 2.3% of the link capacity is wasted on retrans-
missions due to packets dropped in the congested queue at
the port connecting the switch to the receiver. However, as
shown in Figure 10(c), once virtual-ECN is activated, the
lost capacity is regained as virtual-ECN can react to conges-
tion without dropping packets and retransmitting them (ex-
actly like ECN’s behavior in Figure 10(b)).

3.3 Restoring Fairness with virtual-ECN
vCC offers the ability to transform a non-ECN flow into a

virtual-ECN flow. We now evaluate whether this is sufficient
to address the unfairness discussed in Section 3.1.

Figure 11(a) plots the goodput achieved with 9 ECN flows
and one non-ECN flow sharing a 10 Mbps bottleneck link.

It shows again how the non-ECN flow suffers from strong
unfairness.

Figure 11(b) shows the goodput achieved in the same
setting, except that the non-ECN flow has been replaced
with virtual-ECN. The resulting goodput of the flow from
the ECN-incapable guest is now similar to that of its ECN-
capable peers, with goodput 103.8% of the average goodput
of the ECN-capable flows.

To summarize, the translation layer uses receive-window
throttling to cause the guest that does not support ECN to
mimic its ECN peers, significantly improving its own good-
put and the fairness of the network.

4. EVALUATION: HYPERVISOR
BANDWIDTH SHARING

In this section, we describe a proof-of-concept vCC trans-
lation layer, which we implement on the VMware vSphere

238



ESXi 6.0 hypervisor. We later illustrate how it can be used
to provide bandwidth sharing.

The vCC translation layer is implemented as a filter called
DVFilter [38] in the hypervisor’s vSwitch. All per-flow
states necessary for translation are stored in the hypervisor’s
own memory. The translation layer monitors flows pass-
ing through the switch, and inspects the headers in order to
maintain correct state information about the flow (e.g., the
current srtt, or the number of packets in flight). When the
vCC translation layer determines it should modify headers,
it changes the packet headers, recomputes the checksum, and
allows the packet to pass through the filter. In particular, in
this section, we demonstrate how we implemented receive
window throttling in this vCC layer.

Consider a multi-tenant datacenter. Each virtual machine
may be the source of many TCP flows. However, not all of
these flows should necessarily be treated the same for opti-
mal performance. For example, some may be short but time-
sensitive, while others are long but elastic. Thus, it can be
useful to limit the rate at which certain applications are able
to send. More generally, the ability to enforce tenant-based
dynamic bandwidth allocations down to the granularity of
applications is important to meet performance and SLA tar-
gets. WAN traffic shaping using a local Linux bandwidth en-
forcer is a promising approach [39]. This requires a uniform
OS installation that does not generally allow multi-tenant
hosting. Bandwidth limiting is available at guest granularity
in some modern hypervisors (such as Microsoft’s Hyper-V
and VMware’s ESXi), but per-application throttling is gen-
erally not. Moreover, to throttle bandwidth, these techniques
can rely on either dropping packets or building large queues,
which can have a detrimental effect on flow performance and
latency.

Here we show another application of the receive-window
throttling abilities of vCC. By controlling the end-to-end
number of in-flight packets, vCC provides a fine-grained,
datacenter-wide coordination of bandwidth allocation. The
hypervisor detects the signature of a tenant, port or packet,
and restricts the bandwidth used by this particular set of traf-
fic. In addition, the bandwidth limit can be changed dynam-
ically, depending on signals from the network or from the
guest.

Our hypervisor implementation provides a proof-of-
concept for dynamic application-graunlarity bandwidth
throttling. In this experiment, the vCC-enabled hypervisor is
nested on another ESXi running on a Dell Poweredge T610
server, with 12 GB of RAM and two Intel Xeon processors
at 2.4 GHz. Two guest VMs (Linux Centos 6.4) are hosted
on top of the hypervisor, with the vCC translation layer in-
stalled in its vSwitch. They communicate through that hy-
pervisor’s vSwitch. One guest runs an iPerf server on 5 TCP
ports. We divide flows into preferred and unpreferred flows.
The preference can be seen as reflecting time-sensitive or
higher-paying tenants, for example. Three ports are given
to unpreferred flows, and two to preferred flows. The total
amount of window space, i.e., the sum of the RWINs of all
active flows, remains constant at all times. The translation
layer is configured to evenly divide the available window

Figure 12: Stacked throughputs for three unpreferred
and two preferred flows. The flows are receive-window
throttled by the ESXi vCC layer. The sum of the windows
of all the live flows is kept constant throughout the ex-
periment, but the vCC throttles unpreferred flows once
preferred flows start in order to give the preferred flows
greater bandwidth. The vCC layer uses the port number
to differentiate between flows and preferences.

space among unpreferred flows in the absence of preferred
ones. When it detects active in-flight preferred flows, the
translation layer dynamically changes the window space al-
location to proportionally assign more window space to pre-
ferred flows (3 times as much per preferred flow as per un-
preferred flow), and divides the remainder among the unpre-
ferred flows evenly.

Figure 12 illustrates a time series of this experiment. It
shows that after the introduction of the preferred flows, the
throughput of unpreferred flows drops due to receive win-
dow throttling, thus providing the preferred flows a larger
share of the bandwidth. The total throughput before and
after the introduction of preferred flows remains relatively
constant.

5. IMPLEMENTATION DISCUSSION
In this section, we discuss the architectural issues that a

vCC implementation needs to address in the hypervisor.
Architectural complexity. Many hypervisor switches sup-
port an architecture where an independent module can in-
spect, modify, and re-inject the packet (e.g., Microsoft’s
Hyper-V Extensible Switch extension [40], VMware’s ESXi
DVFilter [38], and so on). This architecture is typically used
by firewalls and security modules. For instance, a firewall
implementation may allow over 1 million active connections
with a per-connection state of under 1KB, given a total mem-
ory size of about 1GB.

A vCC implementation can leverage this architecture in
order to modify packets, as we illustrate in our ESXi imple-
mentation. We would expect similar numbers given our sim-
plest techniques without buffering. For instance, our Linux

239



vCC implementation stores only 37 bytes per flow. This
leaves room for a more complex implementation, given a
per-connection footprint budget under 1KB. In addition, in
most of the techniques mentioned in Section 2, the main
CPU load consists of keeping track of the per-connection
states of the guest congestion control algorithm.
Hypervisor delay. Processing delays in the hypervisor can
increase the latency, and therefore the flow completion time,
as well as affect the RTT estimation in the guest TCP algo-
rithm. This effect would be more pronounced when the load
of the hypervisor CPU is sufficiently high to cause context
switches. In such a case, the delay would be on the order of
context switching delays, i.e., several µs.
Hypervisor bypass. High-performance virtualized work-
loads can benefit from bypassing the hypervisor and directly
accessing the network interface card (NIC), using technolo-
gies such as SR-IOV [41–44]. vCC would not work in such
architectures. However, hypervisor bypass is typically used
in high-end devices with the newest OSes. Such OSes of-
ten already implement the latest congestion control, if only
to obtain the best available performance. In addition, future
NICs could also implement vCC, although (a) software up-
dates would not be as easy as for hypervisors, and (b) NICs
may not have access to the more intrusive techniques such as
guest introspection. The same would be true if servers had
FPGAs or middleboxes.
TSO and LRO. TCP Segmentation Offload (TSO) and
Large Receive Offload (LRO) are techniques for increasing
the throughput of high-bandwidth network connections by
reducing CPU overhead. TSO transfers large packet buffers
to the NIC and lets it split them, while LRO does the reverse
operation. The hypervisor needs to modify the vCC trans-
lation layer accordingly. Most techniques remain nearly un-
changed. However, techniques that rely on packet buffering
will need much larger buffers, and, if vCC wishes to retrans-
mit TCP segments, it will also need to recreate individual
segments.
Configuration. In the vCC architecture, the network admin-
istrator can assign a different congestion control to different
ports, IP addresses, applications, OSes, or tenants. For in-
stance, long-term background flows may have a less aggres-
sive congestion control than short urgent flows, or a propri-
etary congestion control can be restricted to intra-datacenter
connections. Of course, a major disadvantage of modulating
the congestion control is that several congestion control al-
gorithms will coexist again in the datacenter. Note that it is
easy to configure vCC to not modify certain traffic. Future
work could include automatic detection of flows that need
translation, reducing the need for administrator configura-
tion.
Delay-based congestion control. We believe vCC can
translate to/from delay-based TCP algorithms like TCP Ve-
gas and TIMELY [8]. To do so, it would need to use the
more heavyweight techniques at its disposal, such as split
connections and buffers.
UDP. This paper focuses on TCP, and therefore we would
expect the hypervisor to let UDP traffic go through the trans-
lation layer in a transparent manner. Of course, we could

generalize the same translation idea to UDP, and for instance
make the translation layer translate UDP to a proprietary re-
liable UDP algorithm, at the cost of additional buffering and
complexity.
Universal language. In order to directly translate between n
congestion control algorithms, we would theoretically need
to implementO(n2) translations. Instead, we could envision
a universal atomic congestion control protocol enabling us to
implement only 2n translation to/from this protocol.
Encryption: Our analysis suggests that the vCC architecture
can similarly be used to offer encryption services, such as
TCPCrypt and IPSec [45, 46], to legacy unencrypted TCP
flows. If the guest is already encrypting communications,
vCC would need to access session keys in order to operate,
for instance by reading guest memory.
Debugging. Adding packet-processing modules at the con-
nection end-point necessarily makes debugging more com-
plex when there are connection issues on a host. On the
other hand, normalizing all the congestion control algo-
rithms to the same reference algorithm, as enabled by vCC,
can greatly simplify in-network debugging: where there
were once many versions of different congestion control al-
gorithms, there is now a single version of a single algorithm.
Inside connections. When two guest VMs on the same hy-
pervisor communicate, they still go through the hypervisor,
and therefore through the same translation layer. As a result,
vCC is expected to work without changes.

6. RELATED WORK
AC/DC. AC/DC [47] has independently and concurrently in-
troduced a similar approach to ours. It shares many of the
main goals and ideas of this paper. AC/DC suggests that
datacenter administrators could take control of the TCP con-
gestion control of all the VMs. In particular, it demonstrates
this approach by implementing a vSwitch-based DCTCP
congestion control algorithm. AC/DC provides a thorough
evaluation, including a demonstration of the effectiveness of
AC/DC in solving the incast and fairness problems identified
in [7] and CPU overhead measurements.

We view our virtualized congestion control (vCC) solu-
tion as a general framework for translating between conges-
tion control algorithms. For example, our framework allows
the translation of only the legacy flows, or the translation
of only the sender (or receiver) side. Our experiments show
that vCC allows virtually-translated legacy flows to fairly co-
exist with modern non-virtualized flows. On the conceptual
side, we survey additional translation techniques, such as
introspection and split-connection. In addition, we provide
emulation proofs for ECN and DCTCP in specific cases. Be-
yond vCC, we also introduce the general concept of algorith-
mic virtualization for legacy algorithms.
Congestion control algorithms. Many congestion control
algorithms and extensions have been suggested for datacen-
ters, including ECN, DCTCP, D2TCP, MPTCP, TCP-Bolt,
TIMELY, DX, Halfback and DCQCN [1–12]. A goal of this
paper is to enable the hypervisor to implement such novel
algorithms in the underlay physical network given legacy al-

240



gorithms in the guest VMs on the network.
Several papers have also suggested that the congestion

control algorithm could adapt to the datacenter network con-
ditions, e.g. by using Remy, Tao or PCC [13–15]. Our vCC
architecture is ideally situated to implement such an adapt-
able congestion control algorithm in the underlay network.
TCP rate control. The ACK pacing and TCP rate control
approaches attempt to regulate the sending rate of each TCP
flow [22–26]. These papers present the techniques of buffer-
ing TCP packets and ACKs, as well as throttling the receive
window. Our vCC approach uses similar approaches. While
these papers typically attempt to reach a fixed sending rate,
the goal of vCC is to translate between legacy congestion
control algorithms and any modern congestion control algo-
rithm.
Link-level retransmissions. In wireless communications,
the Snoop protocol [20, 30] can buffer data packets at the
base station, and then snoop on ACKs and retransmit lost
packets on behalf of the sender, making sure to block du-
plicate ACKs from reaching the sender. This is similar
to a link-level retransmission protocol, and can help address
large loss rates at the last-mile link. Our vCC hypervisor can
similarly snoop on ACKs and prevent duplicate ACKs from
reaching the sender. However, it operates at the end-to-end
level, and not at the link level.
Split connection. The split-connection approach breaks a
TCP connection into several sub-connections, e.g., using a
TCP proxy [19, 20, 48]. In contrast, vCC need not break the
end-to-end principle; it can keep the original connection and
does not need to create ACKs for data not received by the
destination receiver.
Fairness between VMs. An alternative approach for
providing fairness between VMs is to use datacenter-
wide isolation-based techniques that are able to enforce
bandwidth guarantees while attempting to maintain work-
conserving link usage [49–53]. Also, a related approach
for the multitenant datacenter owner is to strictly divide the
bandwidth among the tenants, giving each a fixed alloca-
tion [17]. Rate limiters and shapers in hypervisors and in
NIC hardware [41, 54] can also help enable better fairness
between local VMs.

7. CONCLUSION
Our goal was to make it easy to deploy new and improved

congestion control algorithms into multitenant datacenters,
without having to worry about TCP-friendliness with non-
participating virtual machines. This paper presents vCC,
which enables the datacenter owner to introduce a new con-
gestion control algorithm in the hypervisors. Internally, the
hypervisors translate between the new congestion control
algorithm and the old legacy congestion control, allowing
legacy applications to enjoy the benefits of the new algo-
rithm. Using the example of ECN traffic, we show how this
vCC solution can have an impact on fairness among tenants.

In the longer term, our goal is for the hypervisor transla-
tion layer to provide hooks that would simplify the coding
of new congestion control algorithms, similarly to the exist-

ing hooks in the current Linux TCP stack implementations.
These hooks would significantly reduce the deployment time
of novel congestion control algorithms in large-scale data-
centers.

8. ACKNOWLEDGMENTS
We would like to thank the many people whom we con-

sulted for this paper, including Guido Appenzeller, David
Tennenhouse, Dahlia Malkhi, Mukesh Hira, Ben Basler, Jim
Stabile, Azeem Feroz, Boon Ang, Pushkar Putil, Naga Katta,
Subrahmanyam Manuguri, Steven Hand, Marco Canini, Gal
Mendelson, Asaf Samuel, as well as our shepherd, Vishal
Misra, and our anonymous reviewers.
This work was partly supported by the Platform Lab and
ONRC (Open Networking Research Center) at Stanford,
funding from Intel and AT&T, the Hasso Plattner Institute
Research School, the Gordon Fund for Systems Engineer-
ing, the Technion Fund for Security Research, the Israeli
Consortium for Network Programming (Neptune), and the
Israel Ministry of Science and Technology.

9. REFERENCES
[1] Mohammad Alizadeh, Albert Greenberg, David A

Maltz, Jitendra Padhye, Parveen Patel, Balaji
Prabhakar, Sudipta Sengupta, and Murari Sridharan.
Data Center TCP (DCTCP). ACM SIGCOMM, 2011.

[2] Mohammad Alizadeh, Adel Javanmard, and Balaji
Prabhakar. Analysis of DCTCP: stability,
convergence, and fairness. ACM SIGMETRICS, 2011.

[3] Costin Raiciu, Sebastien Barre, Christopher Pluntke,
Adam Greenhalgh, Damon Wischik, and Mark
Handley. Improving datacenter performance and
robustness with multipath TCP. ACM SIGCOMM,
2011.

[4] Balajee Vamanan, Jahangir Hasan, and
TN Vijaykumar. Deadline-aware Datacenter TCP
(D2TCP). ACM SIGCOMM, 2012.

[5] Haitao Wu, Jiabo Ju, Guohan Lu, Chuanxiong Guo,
Yongqiang Xiong, and Yongguang Zhang. Tuning
ECN for data center networks. ACM CoNEXT, 2012.

[6] Brent Stephens, Alan L Cox, Anubhav Singla, Jenny
Carter, Colin Dixon, and Wes Felter. Practical DCB
for improved data center networks. IEEE Infocom,
2014.

[7] Glenn Judd. Attaining the promise and avoiding the
pitfalls of TCP in the datacenter. USENIX NSDI, 2015.

[8] Radhika Mittal, Nandita Dukkipati, Emily Blem,
Hassan Wassel, Monia Ghobadi, Amin Vahdat,
Yaogong Wang, David Wetherall, David Zats, et al.
TIMELY: RTT-based congestion control for the
datacenter. ACM SIGCOMM, 2015.

[9] Changhyun Lee, Chunjong Park, Keon Jang, Sue
Moon, and Dongsu Han. Accurate latency-based
congestion feedback for datacenters. USENIX ATC,
2015.

[10] Qingxi Li, Mo Dong, and Brighten Godfrey. Halfback:

241



Running short flows quickly and safely. ACM
CoNEXT, 2015.

[11] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra
Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. Congestion control for large-scale
RDMA deployments. ACM SIGCOMM, 2015.

[12] Prasanthi Sreekumari and Jae-il Jung. Transport
protocols for data center networks: a survey of issues,
solutions and challenges. Photonic Network
Communications, pages 1–17, 2015.

[13] Keith Winstein and Hari Balakrishnan. TCP ex
machina: Computer-generated congestion control.
ACM SIGCOMM, 2013.

[14] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker,
and Hari Balakrishnan. An experimental study of the
learnability of congestion control. ACM SIGCOMM,
2014.

[15] Mo Dong, Qingxi Li, Doron Zarchy, Brighten
Godfrey, and Michael Schapira. Rethinking
congestion control architecture: Performance-oriented
congestion control. ACM SIGCOMM, 2014.

[16] Mirja Kuhlewind, David P Wagner, Juan
Manuel Reyes Espinosa, and Bob Briscoe. Using Data
Center TCP (DCTCP) in the Internet. IEEE Globecom
Workshops, 2014.

[17] Eitan Zahavi, Alexander Shpiner, Ori Rottenstreich,
Avinoam Kolodny, and Isaac Keslassy. Links as a
Service (LaaS): Guaranteed tenant isolation in the
shared cloud. ACM/IEEE ANCS, 2016.

[18] Stefano Vissicchio, Olivier Tilmans, Laurent
Vanbever, and Jennifer Rexford. Central control over
distributed routing. ACM SIGCOMM, 2015.

[19] Michele Luglio, M Yahya Sanadidi, Mario Gerla, and
James Stepanek. On-board satellite split TCP proxy.
IEEE J. Select. Areas Commun., 22(2):362–370, 2004.

[20] Xiang Chen, Hongqiang Zhai, Jianfeng Wang, and
Yuguang Fang. A survey on improving TCP
performance over wireless networks. Resource
management in wireless networking, 2005.

[21] vCC project. http://webee.technion.ac.il/~isaac/vcc/.
[22] Lampros Kalampoukas, Anujan Varma, and

KK Ramakrishnan. Explicit window adaptation: A
method to enhance TCP performance. IEEE Infocom,
1998.

[23] Shrikrishna Karandikar, Shivkumar Kalyanaraman,
Prasad Bagal, and Bob Packer. TCP rate control. ACM
SIGCOMM, 2000.

[24] James Aweya, Michel Ouellette, and Delfin Montuno.
A self-regulating TCP acknowledgment (ACK) pacing
scheme. International Journal of Network
Management, 12(3):145–163, 2002.

[25] Huan-Yun Wei, Shih-Chiang Tsao, and Ying-Dar Lin.
Assessing and improving TCP rate shaping over edge
gateways. IEEE Trans. Comput., 53(3):259–275, 2004.

[26] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and

Injong Rhee. Tackling bufferbloat in 3G/4G networks.
IMC, 2012.

[27] Tal Garfinkel and Mendel Rosenblum. A virtual
machine introspection based architecture for intrusion
detection. NDSS, 2003.

[28] Bryan D Payne, Martim Carbone, Monirul Sharif, and
Wenke Lee. Lares: An architecture for secure active
monitoring using virtualization. IEEE Symposium on
Security and Privacy, 2008.

[29] VMsafe. https://www.vmware.com/company/news/
releases/vmsafe_vmworld.

[30] Hari Balakrishnan, Srinivasan Seshan, and Randy H
Katz. Improving reliable transport and handoff
performance in cellular wireless networks. Wireless
Networks, 1(4):469–481, 1995.

[31] RFC 5681. https://tools.ietf.org/html/rfc5681.
[32] Stefan Savage, Neal Cardwell, David Wetherall, and

Tom Anderson. TCP congestion control with a
misbehaving receiver. ACM SIGCOMM, 1999.

[33] RFC 6582. https://tools.ietf.org/html/rfc6582.
[34] Nikhil Handigol, Brandon Heller, Vimalkumar

Jeyakumar, Bob Lantz, and Nick McKeown.
Reproducible network experiments using
container-based emulation. ACM CoNEXT, 2012.

[35] Sally Floyd. TCP and explicit congestion notification.
ACM SIGCOMM, 1994.

[36] Mirja Kühlewind, Sebastian Neuner, and Brian
Trammell. On the state of ECN and TCP options on
the Internet. International Conference on Passive and
Active Measurement, 2013.

[37] Yin Zhang and Lili Qiu. Understanding the end-to-end
performance impact of RED in a heterogeneous
environment. Technical report, Cornell, 2000.

[38] VMware vSphere DVFilter.
https://pubs.vmware.com/vsphere-60/index.jsp?topic=
%2Fcom.vmware.vsphere.networking.doc%
2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.
html.

[39] Alok Kumar, Sushant Jain, Uday Naik, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C. Stephen
Gunn, Jing Ai, Bjorn Carlin, Mihai
Amarandei-Stavila, Mathieu Robin, Aspi Siganporia,
Stephen Stuart, and Amin Vahdat. BwE: Flexible,
hierarchical bandwidth allocation for WAN distributed
computing. ACM SIGCOMM, 2015.

[40] Microsoft Hyper-V Extensible Switch.
https://msdn.microsoft.com/en-us/library/windows/
hardware/jj673961%28v=vs.85%29.aspx.

[41] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar
Jeyakumar, Abdul Kabbani, George Porter, and Amin
Vahdat. Senic: Scalable NIC for end-host rate
limiting. USENIX NSDI, 2014.

[42] Radhika Niranjan Mysore, George Porter, and Amin
Vahdat. FasTrak: enabling express lanes in
multi-tenant data centers. ACM CoNEXT, 2013.

[43] Jeffrey C Mogul, Jayaram Mudigonda, Jose Renato

242

http://webee.technion.ac.il/~isaac/vcc/
https://www.vmware.com/company/news/releases/vmsafe_vmworld
https://www.vmware.com/company/news/releases/vmsafe_vmworld
https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/rfc6582
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.html
https://msdn.microsoft.com/en-us/library/windows/hardware/jj673961%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/jj673961%28v=vs.85%29.aspx


Santos, and Yoshio Turner. The NIC is the hypervisor:
bare-metal guests in IaaS clouds. 2013.

[44] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik
Palkar, Dongsu Han, and Sylvia Ratnasamy. SoftNIC:
A software NIC to augment hardware. Technical
Report UCB/EECS-2015-155, UC Berkeley, 2015.

[45] Stephen Kent and Karen Seo. Security Architecture
for the Internet Protocol. RFC 4301, RFC Editor,
December 2005.

[46] Andrea Bittau, Michael Hamburg, Mark Handley,
David Mazières, and Dan Boneh. The case for
ubiquitous transport-level encryption. USENIX
Security, 2010.

[47] Keqiang He, Eric Rozner, Agarwal Kanak, Yu Gu,
Wes Felter, John Carter, and Aditya Akella. AC/DC
TCP: Virtual congestion control enforcement for
datacenter networks. ACM SIGCOMM, 2016.

[48] F5 Networks. Optimize WAN and LAN application
performance with TCP Express. 2007.

[49] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and
Ant Rowstron. Towards predictable datacenter
networks. ACM SIGCOMM, 2011.

[50] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang
Yang, Chao Kong, Peng Sun, Wenfei Wu, and
Yongguang Zhang. Secondnet: a data center network
virtualization architecture with bandwidth guarantees.
ACM CoNEXT, 2010.

[51] Alan Shieh, Srikanth Kandula, Albert G Greenberg,
Changhoon Kim, and Bikas Saha. Sharing the data
center network. USENIX NSDI, 2011.

[52] Vimalkumar Jeyakumar, Mohammad Alizadeh, David
Changhoon Kim, and Albert Greenberg. EyeQ:
Practical network performance isolation at the edge.
USENIX NSDI, 2013.

[53] Lucian Popa, Praveen Yalagandula, Sujata Banerjee,
Jeffrey C. Mogul, Yoshio Turner, and Jose Renato
Santos. Elasticswitch: Practical work-conserving
bandwidth guarantees for cloud computing. ACM
SIGCOMM, 2013.

[54] Gautam Kumar, Srikanth Kandula, Peter Bodik, and
Ishai Menache. Virtualizing traffic shapers for
practical resource allocation. USENIX HotCloud,
2013.

243


	Introduction
	Hypervisor translation techniques
	Evaluation: Solving ECN Unfairness
	ECN Unfairness
	Receive-Window Throttling
	Restoring Fairness with virtual-ECN

	Evaluation: Hypervisor Bandwidth Sharing
	Implementation Discussion
	Related Work
	Conclusion
	Acknowledgments
	References

