Optimizing aggregate throughput of upstream TCP flows over IEEE 802.11 wireless LANs

International symposium on Personal, Indoor and Mobile Radio Communications 2007 PIMRC 2007

Nakjung Choi, **Jiho Ryu**, Yongho Seok, Taekyoung Kwon and Yanghee Choi **Seoul National University**

Outline

- Introduction
- TAP (TCP ACK Priority)
- Performance Evaluation
- Conclusion

- TCP's congestion control mechanism
 - Slow start
 - Congestion window (cwnd) is set to 1
 - cwnd is increased exponentially until it reaches slow start threshold
 - Congestion avoidance
 - After cwnd reaches the ssthresh
 - cwnd is increased by 1/segment after each RTT
 - Linearly increasing.
 - When a station has sent cwnd of TCP data, it cannot send more data until it receives a TCP ACK from the recipient.

- Aggregated goodput of TCP flows
 - S. Choi, K. Park, and C. Kim, "On the performance characteristics of WLANs: revisited," ACM Sigmetrics.

PDF of the # of active stations for uploading TCP

Probability density function about the number of active STAs

Optimal number of wireless STAs to achieve maximum throughput

Outline

- Introduction
- TAP (TCP ACK Priority)
- Performance Evaluation
- Conclusion

TCP ACK Priority

- How can we increase the number of active stations?
 - TCP ACK Priority
 - If the maximum aggregate throughput of a WLAN can be achieved when n STAs (including an AP) contend to access the wireless channel → can be obtained from previous analysis
 - The AP transmits TCP ACKs to n -1 STAs in a way that preempts all other transmissions.
 - AP intentionally transmits the TCP ACK packet at the 0th slot after a DIFS, with no backoff time.

TCP ACK Priority

Incorporation

(a) IEEE 802.11 DCF 0^{th} -slot or IEEE 802.11e EDCA TXOP

- 802.11e
 - Transmission Opportunity (TXOP) feature
- 802.11n
 - Packet aggregation

Outline

- Introduction
- TAP (TCP ACK Priority)
- Performance Evaluation
- Conclusion

- NS2 simulator
 - Wireless part: n STAs and one AP
 - n hosts in the wired part
 - Traffic: FTP model, 1024-bytes TCP DATA
 - DATA tx rate: 11 Mbps
 - RTS/CTS tx rate: 1 Mbps
 - Simulation time: 200 seconds
 - PDF of the number of active STAs, aggregate throughput,
 and fairness index
 upstream TCP

- PDF of the number of active STAs
 - without RTS/CTS → optimal n is 4

Aggregated TCP goodput

Fairness Index – long-term, Jain Fairness Index

Conclusion

TCP ACK Priority

- Oth time slot is used to transmit the TCP ACK packet
- 802.11e's TXOP can be used too.
- Make the optimal number of competing stations contend for media access.
- Higher aggregate TCP goodput is achieved.

Thank you!! Q&A

