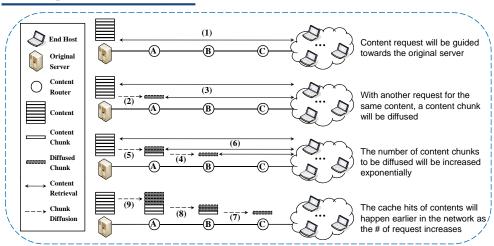
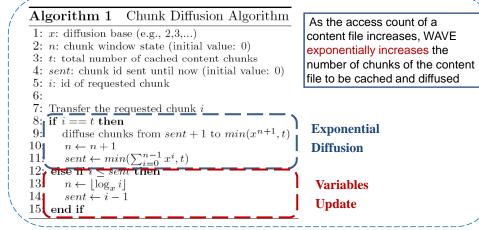


Chunk-based In-network Caching and Diffusion in Content-Centric Networks

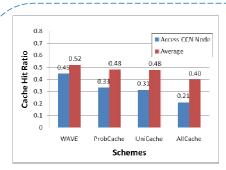
Kideok Cho, Munyoung Lee, Kunwoo Park, Ted "Taekyoung" Kwon, Yanghee Choi, Seoul National University

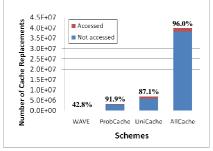

Motivation

- Depending on caching strategies, the overall performance of CCNs can vary significantly
 - In terms of cache hit ratio and storage utilization
- Previous works cannot be directly applied to the CCNs
 - Topological limitations, explicit coordination between caches, prior knowledge on request pattern, ...
 - Without cooperative caching, there might be duplicated caching, resulting in storage waste
- Also, inter-chunk relation raises interesting issues in chunk-based CCNs
 - E.g., sequential delivery, ...
- We propose a "Simple", "Decentralized", and "Popularity-based" caching and diffusion algorithm in CCNs, called WAVE


Proposed Idea (WAVE) Overview

- Distribute/diffuse content chunks to the network entities (such as routers)
 - Diffuse chunks as the content request changes
 - To make "the cache hits of contents" happen earlier (closer to end users)
- As a consequence,
 - Network utilization will be improved: the number of duplicate content delivery (thus total traffic volume) can be reduced
 - Caching efficiency will be enhanced: chunks of popular contents will be cached more
- The overhead of cache management will be reduced


WAVE Operation Illustration



WAVE Algorithm

Simulation Results

- WAVE achieves the highest cache hit than the other schemes (both access CCN node and on average)
 - By caching the popular chunks more (exponentially increasing caching)
- AllCache shows the lowest cache hit ratio due to its popularity-blind and aggressive caching
- Only 42.8% of chunks are replaced without being accessed in WAVE due to its popularity-based chunk diffusion algorithm
 - Resulting in efficient cache management
- More than 87% of content chunks are not accessed before being replaced in the other schemes

Conclusion & Future Work

- WAVE achieves higher cache hit ratio & less cache replacement counts
- WAVE implementation using CCNx & Large-scale experiments over the testbeds (e.g., cloud, PlanetLab, etc)