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Abstract

In this paper, we propose and evaluate a distributed, energy-efficient, light-weight framework for target localization and tracking in
wireless sensor networks. Since radio communication is the most energy-consuming operation, this framework aims to reduce the num-
ber of messages and the number of message collisions, while providing refined accuracy.

The key element of the framework is a novel localization algorithm, called Ratiometric Vector Iteration (RVI). RVI is based on dis-
tance ratio estimates rather than absolute distance estimates which are often impossible to calculate. By iteratively updating the estimated
location using the distance ratio, RVI localizes the target accurately with only three sensors’ participation.

After localization, the location of the target is reported to the subscriber. If the target is stationary or moves around within a small
area, it is wasteful to report (almost) the same location estimates repeatedly. We, therefore, propose to dynamically adjust a reporting
frequency considering the target’s movement so that we can reduce the number of report messages while maintaining tracking quality.
Extensive simulation results show that the proposed framework combining RVI and the movement-adaptive report scheduling algorithm
reduces the localization error and total number of the transmitted messages up to half of those of the existing approaches.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Wireless sensor networks are systems of small, low-pow-
ered networked sensing devices deployed over an interested
area to monitor interested events and perform application-
specific tasks in response to the detected events. One of the
most significant and elementary application is localization
and tracking moving targets. The type of interested signals
includes temperature, sound, light, magnetism and seismic
vibration: a sensing modality is determined based on the
types of targets to be tracked.

Regardless of the various types of targets and tracking
environments, there are four common procedures involved
in distributed (or decentralized) target tracking applica-
tions: First, sensors should be localized prior to participat-
ing in target tracking tasks. The importance of sensor
0140-3664/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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nodes’s location information have been emphasized in the
literature and many sensor network localization tech-
niques, e.g., [8,9,6,10–13] can be used. We assume that each
node is aware of its location and consider only the other
procedures in the below.

Second, target localization is required. Here, if the target
is able to communicate with sensors (e.g., a householder in
the intelligent home network), the localization problem
gets easier and the same localization technique with sensor
network localization can be used. In many cases, however,
targets are not cooperative with sensors, e.g., enemy vehi-
cles and unregistered victims in disaster areas. Most of
the previous localization algorithms use absolute point-
to-point distance estimates. If the target is cooperative with
the sensor network, it is possible to know the original
signal (interested signal) strength at the target source as a
pre-defined parameter or through communication. In the
non-cooperative cases, however, the absence of the original
signal strength information prevents the use of absolute
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distance estimates. Instead, one can estimate the original
signal strength by collecting and analyzing a number of
sensing data, which often requires non-linear optimization
techniques [16,19]. Because of the high computation and
communication overhead, however, those techniques are
not suitable for low-cost sensors in distributed environ-
ments. In order to tackle this problem, we present a
light-weight localization algorithm, dubbed Ratiometric

Vector Iteration (RVI) that is based on relative distance
ratio estimates rather than absolute distance estimates.
RVI not only achieves high accuracy, but also enables a
distributed operation in the low-cost sensors.

Third, collaborative data processing among nodes is
desirable because sensing information collected from differ-
ent sensors may be redundant and contribute to the localiza-
tion result with different importance. Thus, we need a sensor

collaboration algorithm considering sensory data as well as
constraints on energy consumption, latency and other costs.
Therefore, the leader is often selected to manage collabora-
tive data processing and sensor grouping. The leader also
maintains the target’s state such as location, speed and direc-
tion. Because the target is moving, the state information has
to be forwarded along with the moving target: leader selec-

tion is required. Most previous solutions use explicit group
management (for sensor selection) and leader selection
approaches which incur the control message overhead and/
or assume hierarchical node-cluster deployment. In our
framework, the leader selection and group management
are accomplished implicitly without any additional message
overhead. With the help of received-signal-strength(RSS)-
based backoff timer, we ensure that only a sufficient number
(3 in our case) of sensors broadcast messages to determine
the target location with a low collision probability.

Fourth, the tracking system (in particular, the leader)
should report the location of the target to a sink node in
a timely manner. Usually, the sink is a gateway connecting
the sensor network to the subscriber. Therefore, reporting
to the sink normally requires multi-hop message relaying
whose message transmission overhead is proportional to
the hop distance between the leader and the sink. We pro-
pose a movement-adaptive report scheduling algorithm
that reduces the report message overhead, while keeping
substantial tracking quality at the subscriber side.

Because of the low cost requirement and small-form fac-
tor design of sensor nodes, the resources available to indi-
vidual nodes are highly limited. Although the limitations of
processor bandwidth and small memory are expected to
weaken with a development of fabrication techniques, the
energy constraint is likely to last for decades. Typical sen-
sor nodes are powered by small batteries that are difficult
to replace even if not impossible considering the slow pro-
gress in battery capacity [1]. In wireless sensor networks, in
particular, communication is the most energy-consuming
operation, with each bit transmission costing as much ener-
gy as about 1000 instructions processing [2]. With this in
mind, the goals of this paper and the proposed solutions
are given as follows:
• achieving good localization quality with low communi-
cation cost: Ratiometric Vector Iteration

• minimizing the number of collisions among messages:
RSS-based backoff timer

• reducing the number of transmitted messages: move-
ment-adaptive report scheduling.

We begin with Section 2 which gives related work. In
Section 3, we introduce a novel localization algorithm,
RVI, and show its advantages. In Section 4, we give some
assumptions and describe the target tracking cycle com-
posed of three steps. The message collision probability is
analyzed in Section 5 and we present simulation results in
Section 6. Section 7 concludes this paper.

2. Related work

Localization: Many existing localization algorithms for
wireless sensor networks employ a centralized operation
and/or use an absolute distance estimates. A large volume
of sensing data are gathered from sensors and processed in
a centralized manner. The gathered data are applied to
multidimensional scaling [8], convex optimization [9], max-
imum likelihood testing [6], and so on. High computational
overhead, however, prevents the use of those centralized
localization methods in distributed, low-cost, low-power
sensor networks. Moreover, the centralized method
requires all sensory data to be delivered to the high-end
node, which incurs high communication overhead.

Absolute point-to-point distances estimated from RSS or
time-of-arrival (TOA) or time-difference-of-arrival (TDOA)
information are often used for localization. Cricket [10] is
the well-known solution based on absolute distances esti-
mated from TDOA between a radio signal and an ultra
sound signal. Some distributed localization algorithms
[11,12] do not use the absolute distance estimates but require
communication between the target and sensors, which is
impractical in non-cooperative scenarios assumed in this
paper. Centroid [13] is a distributed solution which is not
dependent on absolute distance estimates. Nodes localize
themselves to the centroid of reference points (target-detect-
ing sensors in this paper) considering poor distance esti-
mates from the RSS. The proposed Weighted Centroid
algorithm in this paper is an advanced version of Centroid.

All of the above solutions are suitable for localizing sen-
sor network itself or cooperative targets. For the non-coop-
erative target localization, several solutions [16,19] have
been proposed in the literature. As will be discussed in Sub-
section 3.2, the previous solutions have some limitations of
high computation overhead and/or hierarchical sensor
deployment.

Target tracking: Collaborative data processing and in-
network processing have been extensively studied to reduce
redundant communication in target tracking applications.
Clustering or group-based techniques such as informa-

tion-driven sensor query (IDSQ) [14] and dynamic convoy

tree-based collaboration (DCTC) [15] are well-known solu-



2496 J. Lee et al. / Computer Communications 29 (2006) 2494–2505
tions for collaborative data processing. They explicitly
select and manage sensors that participate in target track-
ing. However, the group management and the hierarchical
structure maintenance overhead are not negligible and
eventually incur additional expenditure of energy for com-
putation and communication. Our approach performs col-
laborative target tracking implicitly with small message
overhead through RVI and RSS-based backoff timer that
guarantees low collision probability. A dynamic clustering
and Voronoi diagram-based target tracking framework is
proposed in [16] for acoustic target tracking. Pre-construc-
tion of neighborhood Voronoi diagram and the use of two-
phase random backoff timer enable efficient cluster-head
and sensor selections. However, it requires a designated
powerful cluster heads’ deployment and the localization
accuracy depends on the nature of the approximation tech-
nique’s poor accuracy. The proposed approach of this
paper supports a fully distributed operation while render-
ing good accuracy.

Some algorithms such as [17,18] predict the future target
position based on the assumption of a linear target trajecto-
ry. Such prediction-based approaches, however, are not
robust when the prediction is wrong. Our tracking frame-
work does not predict or maintain target history but keeps
only the most recently reported target location and the
reporting time instance. Also proposes an adaptive protocol
that controls the frequency of localization based on the
velocity of moving sensors [18]. The idea of reducing message
overhead by adapting to the sensor movement is similar to
the proposed report scheduling algorithm of this paper.
However, [18] considers the localization of moving sensors

while we deal with the tracking of a moving target in the
localized sensor network. We also discuss the additional
use of report messages for local time synchronization.

3. Target localization

3.1. Sensing model

We use a conventional received-signal-strength (RSS)
based sensing model in which RSS decreases exponentially
with the propagation distance:

ri ¼
a

jX � Sija
þ ni; 1 6 i 6 N ; ð1Þ

where ri is the sensed RSS value in the ith sensor, a is the
original signal strength at the target source, X is the target
location in two-dimensional coordinate system, Si is the
location of ith sensor, |X � Si| means the Euclidean dis-
tance between X and Si, a is the pathloss exponent and ni

is the White Gaussian noise with Nð0; rÞ. N is the number
of sensors around the target. Again, X and Si are elements
of R2 in this paper. We assume that ri, Si, and a are known
values, while a and X are unknown. Since a is unknown, it
is difficult to estimate an absolute point-to-point distance.

We can use a relative distance ratio, ri/rj, (i „ j). By dis-
regarding the noise, the ratio between RSS in the ith sensor
and jth sensor, r�1=a
i =r�1=a

j represents the ratio of the target-
to-ith-sensor distance to the target-to-jth-sensor distance as
follows:

r�1=a
i : r�1=a

j ¼ jSi � X j : jSj � X j; ð2Þ

where i „ j, 1 6 i, j 6 N.
Before describing the proposed RVI algorithm, we first

introduce two existing approaches for the purpose of
comparison.

3.2. Previous approaches

Approximation: The location of a sensor with the highest
received-signal-strength can be used as the approximate

location of the target [16]. This is the simplest method,
but its localization accuracy is poor: the localization error
is about a half of the inter-sensor distance. In [16], a Voro-
noi diagram is exploited to bound the error of the above
approximation in the presence of sensing noise. This voro-
noi-diagram based approach, however, has some limita-
tions. First, the noise still affects the approximation error
when the Voronoi diagram is constructed. Second, this
approach requires a static backbone of hierarchically
placed high-capability sensors. Third, because a measured
RSS of a sensor should be compared with that of all Voro-
noi neighbors of the sensor, the number of participating
sensors (Voronoi neighbors) may increase overwhelmingly
as the sensor node density increases, especially in a random
sensor distribution.

Nonlinear optimization: Given a pair of sensing data
(ri, rj) and the locations of both sensors (Si, Sj), the locus
of the potential location of the target X can be shown to
be an Apollonius circle: the set of all points whose distanc-
es from two fixed points (Si,Sj) are in a constant ratio
|X � Si| : |X � Sj|. For noisy measurements, the unknown
target location X is estimated by solving a nonlinear least
square problem of the form [16,19]:

X ¼ arg min
Xm

k¼1

jX � Okj2 � p2
k

p2
k

;

where m is the number of given ratios, Ok is the center
coordinates, and pk is the radius of the Apollonius circle
associated with the kth ratio. Newton’s method [20] can
be used to solve the nonlinear least square optimization
problem. This sophisticated method promises good local-
ization results at the expense of high computational
complexity: it is not a suitable solution for low-cost
sensors.

3.3. Proposed algorithm description

We describe a novel localization algorithm using a dis-
tance ratio, Ratiometric Vector Iteration (RVI). Before
describing RVI, we first introduce the weighted centroid
technique which will be used to obtain an initial guess close
to the true target location for RVI’s iterative estimations.



J. Lee et al. / Computer Communications 29 (2006) 2494–2505 2497
Weighted Centroid: Given locations of k (k P 3) sensors
(S1, . . . ,Sk) and sensing data (r1, . . . ,rk) from those sensors,
the location of target in a two-dimensional Euclidean plane
can be estimated as a weighted centroid of sensor’s loca-
tions where each weight (w1, . . . ,wk) on each sensor’s loca-
tion is characterized by

w1 : w2 : . . . : wk

¼ 1

jS1 � X jb
:

1

jS2 � X jb
: . . . :

1

jSk � X jb
;

¼ rb=a
1 : rb=a

2 : . . . : rb=a
k ;

where b determines a weight function. That is, b = 1 means
that the weight is an inverse of distance and b = 2 implies a
square inverse function. Note that, if a = b, sensing data
can be used as weights without additional algebraic opera-
tion, that is wi = ri. The target location estimate by Weight-
ed Centroid, XWC, is given by

X WC ¼
Pk

i¼1wiSiPk
i¼1wi

.

We call this algorithm as a weighted centroid.
Ratiometric Vector Iteration: In Fig. 1, if X and Xj rep-

resent the true location of the target and the estimated
location at the jth iteration respectively, we can move Xj

‘‘toward’’ X such that the difference between a distance

ratio jS1X
��!j : jS2X

��!j : jS3X
��!j ¼ 2 : 1 : 2 and a distance ratio

jS1X j
��!j : jS2X j

��!j : jS3X j
��!j ¼ 1 : 3 : 3 decreases. Note that

jSiX j
��!j ¼ jSi � X jj. Vectors SiX j

��!
are multiplied by the ratio

difference and summed up to compose a vector V j
�!

which
is eventually added to the Xj. This vector translation of Xj

by V j
�!

is repeated until Xj is sufficiently close to the true
location X.

As inputs to the RVI algorithm, locations of k (k P 3)
sensors (S1,S2, . . . ,Sk) and sensing data (r1,r2, . . . , rk) from
those sensors are given. Then, the distance ratio is repre-
sented by using sensing values r�1=a

i , and we normalize it
by the sum

Pk
i¼1r�1=a

i for the purpose of comparison:
Fig. 1. Ratiometric Vector Iteration.
jS1X
��!j : . . . : jSkX

��!j ¼ r�1=a
1 : . . . : r�1=a

k

¼ g1 : . . . : gk

where gi ¼
r�1=a

iPk
i¼1r�1=a

i

:

The goal of RVI is to update Xj such that the difference
between jS1X j

��!j : . . . : jSkX j
��!j and g1: . . . :gk decreases. This

translation of Xj is iterated until the direction of Vj drasti-
cally changes or the normalized moving distance of Xj

becomes smaller than a pre-determined threshold size
Cth. A generalized algorithm description is given as follows:

0. Initialization: The target location estimate at the jth
iteration is denoted by Xj. The location estimated
by weighted centroid, XWC is used as the starting
point for the first iteration, i.e., X0 = XWC. The mov-
ing vector is initialized as zero, i.e., V 0 ¼ 0

!
. Set the

iteration index j = 0.
1. Normalization: For comparison with g1: . . . :gk, the

ratio jS1X j
��!j : . . . : jSkX j

��!j is also normalized by the
sum

Pk
i¼1jSiX j
��!j and is given by

jS1X j
��!j : . . . : jSkX j

��!j ¼ g1;j : . . . : gk;j;

where gi;j ¼
��SiX j
��!��

Pk

i¼1

��SiX j

���!�� :
2. RVI Move: The move vector V j

�!
is given by

V j
�! ¼Xk

i¼1

ðgi � gi;jÞ
SiX j
��!
jSiX j
��!j :

Each element vector SiX j
��!

is normalized by jSiX j
��!j be-

cause the vector only indicates the direction and the
vector size is determined by the difference between ra-
tios (gi � gi,j).

3. New Estimate: Update

X jþ1 ¼ X j þ V j
�!

. ð3Þ
4. Stationary Point: The algorithm terminates if

V j�1
��! � V j

�!
< 0

or

jX jþ1 � X jj
Dinter sensor

< Cth

where Dinter_sensor denotes the pre-determined average
inter-sensor distance, and Cth is the threshold for a ter-
minating condition. In other words, the algorithm
stops when the direction of V j

�!
drastically changes

from the direction of the previous iteration vector
V j�1
��!

, or the moving distance at the jth iteration (nor-
malized by the average inter-sensor distance) becomes
smaller than Cth. The condition V j�1

��! � V j
�!

< 0 pre-
vents infinite pingpong repetition around the target.On
these termination conditions, RVI stops and returns
the target location estimate as the algorithm output:



Fig. 2. Examples of Ratiometric Vector Iteration.
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X RV ¼ X jþ1.

Otherwise, the index j is incremented, and the algo-
rithm goes to step 1.

Fig. 2 shows the six results of our test program with
three sensors (k = 3) which forms a regular triangle assum-
ing noiseless sensing. An arrow indicates the true target
location and small points represent a convergence of target
estimates during iterations. An eyeball-like circle at the
beginning indicates the starting point XWC. When the tar-
get resides inside the triangle (convex area) formed by three
sensors, the RVI algorithm accurately estimates the target
location as shown by the case A. Moreover, the case C
shows that the target location estimate is accurate even
when the target is outside the triangle but inside the large
dotted circle. Generally speaking, if the target is located
inside the circumscribed circle passing through all three
sensors, RVI accurately estimate the target location. If
the target is outside the circumscribed circle, as shown by
cases B and D, the target tends to be localized at the oppo-
site of the true target location along the line passing the tar-
get location and the center of the circumscribed circle. As
the target goes farther from the circle, the estimated loca-
tion becomes closer to the center of the circle, which means
the estimation error increases.

As shown in Fig. 2, this approach takes a large number
(up to 50) of iterations to accurately point the true loca-
tion. It is because the ratio difference (gi � gi, j) and, even-
tually, the step size j V j

�!j gets smaller as Xj becomes
closer to the target location X. Thus, in order to reduce
the number of iterations for convergence, we rewrite Eq.
(3) to set the step size as a constant, c:

X j ¼ X j�1 þ Dj;

Dj ¼
c

V j
�!�� V j
�!�� if j > N init and j V j

�!j < c;

V j
�!

otherwise.

8>><
>>: ð4Þ

In the first Ninit number of iterations1, the moving distance
Dj is allowed to be smaller than c so that iteration vectors
can progressively change its direction toward the target
location. If the initial iterations have an inappropriate large
vector size, the direction of the move vector would change
drastically, and the algorithm will stop by the condition
V j�1
��! � V j

�!
< 0 before getting closer to the true location.

The algorithm terminates in a finite number of iterations
by the termination conditions. With Eq. (4), in particular,
the condition V j�1

��! � V j
�!

< 0 guarantees the termination of
algorithm around the true target location X because the
constant step size may not achieve fine-grained conver-
gence, and eventually the direction of the move vector
changes drastically (more than 90�) around the true
location.
1 Ninit = 3 in this paper.
There is a tradeoff between the estimation accuracy and
the total number of iterations. As the step size c increases,
the algorithm converges to the target location with the less
number of iterations, and the estimation error |XRV � X|
increases, and vice versa. When the new Eq. (4) is applied
to the test program with c = 0.1 while the inter-sensor dis-
tance is 1.0, the maximum number of iterations decreases
to 5 and the algorithm typically performs 3–4 iterations.
With this configuration, the average error is about 0.05,
half of the step size c.

It can be shown that the time complexity of RVI is O (kl)
where RSS and location information are given from k sen-
sors, and l is the number of iterations. We can limit the
number of participating sensors (in this paper, three sen-
sors) and limit the number of iterations to a constant num-
ber (by adjusting the step size c): the complexity becomes
O (1).

3.4. Target-in-triangle/target-in-circle issues

In the previous subsection, as long as the target
resides within the circumscribed circle, RVI achieves
good localization results (half of the step size, on the
average). In contrast, if the target is outside the circum-
scribed circle, the estimation error increases up to the
distance between the target location and the center of
the circle.

To observe the probabilities that the target is inside the
triangle (convex area) and the circumscribed circle of the
three closest sensors, an intensive simulation work is per-
formed by using Qualnet network simulator [4]. A total
of 400 sensors are deployed in the area of 190 · 190 m2.
To be free from the edge effect, the target moves only in
the inner area of 150 · 150 m2 and the edge area within
20 m from the area boundary are excluded. Table 1 shows
the probability of having the target inside the triangle/cir-



Table 1
Probability of target-in-triangle/circle

Sensor placement Grid Uni Rnd

Triangle 1.0 0.41 0.25
Circumscribed circle 1.0 0.82 0.73
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cumscribed-circle formed by the three closest sensors from
the target. Grid, uniform (Uni)2, and random (Rnd) node
placement strategies are examined. Note that the target
location is inside the circumscribed circle with high proba-
bility (0.73–1.0) compared to the triangle case. This is the
merit of RVI because it can more effectively handle the geo-
metric dilution of precision (GDOP) problem than tradi-
tional geometric positioning systems.

By using additional information about target states,
such as its trajectory and moving direction, more appropri-
ate convex-area-forming sensors can be selected such that
the target resides within the triangle/the circumscribed cir-
cle with higher probabilities. The use of Voronoi diagram
[16] can find 3 convex-area-forming sensors with the extra
computation and communication overhead. Another way
to increase the above probabilities is to make a more num-
ber of sensors (k > 3) to participate in a target localization.
However, the increased number of sensors indicates the
increased message overhead: in this paper, we confine to
the case with three sensors which is the minimum number
to localize a target in a two dimensional space.

4. Target tracking framework

The proposed framework consists of three main proce-
dures: (a) sensing and buzzing, (b) leader selection and
localization, and (c) reporting to sink nodes. Before elabo-
rating on each procedure, we first introduce network
assumptions.

4.1. Assumptions

First, we assume that each sensor is aware of its own
location and stationary. These are common assumptions
for many sensor network applications. For simplicity and
ease-of-description, we assume isotropic signal propaga-
tion from the target. Thus, the sensing area of a sensor is
shaped as a circle with a radius R centered at the location
of the sensor. Likewise, the sensing area for a target also
forms a circle centered at the location of the target. Because
the original signal strength at a target, a, is unknown in the
sensing model of (1), the radius R is also unknown. We
assume that a has its upper bound amax and the ith sensor
detects the target when the RSS value ri exceeds a pre-de-
termined threshold rth. Therefore, a sensing range R also
has an upper bound Rmax which is derived from (1):
2 In uniform distribution, the area is equally divided into a number of
cells based on the number of sensors. Within each cell, a sensor is placed
randomly.
ri ¼
a
da

i

> rth () di < a1=a � r�1=a
th

) Rmax ¼ a1=a
max � r

�1=a
th ;

ð5Þ

where di = |X � Si|. And we assume that sensors can directly
communicate with the neighboring sensors within a radius at
least 2Rmax. This assumption is typical and even conservative
considering the field data. For example, MICA II Berkeley
mote [3] has a transmission range of up to 300 m in open
space, while the sensing range is at most 30 m even with
long-range infrared sensors. Photoelectric sensors and
acoustic sensors have a sensing range of about 10 m.

The second assumption is a coarse-grained time syn-
chronization among neighboring nodes, which can be eas-
ily achieved by current millisecond-level synchronized
solutions. This level of time synchronization is also
required by MAC protocols such as S-MAC [5]. In our
framework, the leader periodically reports the estimated
target location, which will help the sensors nearby the tar-
get to be synchronized.

Third, it is assumed that different targets are far enough
apart that each sensor can detect only one target at a time.
Detecting the presence of multiple targets and tracking
them require additional sensing and signal processing algo-
rithms [6,7] which are beyond the scope of this paper.

4.2. Target tracking cycle

4.2.1. Target sensing and buzzing

Fig. 3 shows that the three procedures compose a track-
ing cycle. Each sensor that detects a signal whose RSS
exceeds the threshold rth broadcasts a buzz to its one-hop
neighbors. A buzz from the ith sensor contains the sensor’s
coordinates (Si) and the RSS (ri).

Each target-detecting sensor sets a backoff timer and
waits until the timer expires. Specifically, the backoff timer
of the ith sensor, Bi, is

Bi ¼ W size �
r�1=a

i

r�1=a
th

; ð6Þ

where Wsize denote the backoff window size. In summary, the
range of the backoff timer value is [0, Wsize]. Before the timer
expires, the ith sensor keeps listening to other sensors’ buzzes
and if it receives three or more buzzes, it cancels its backoff
timer. This ensures that only three sensors generate buzzes.
Those sensors will have the highest RSS values among tar-
get-detecting sensors with a high probability.

In Section 5, we will show that Bi is linearly proportion-
al to the distance between the target and the ith sensor.
This property guarantees that the first three buzzes will
be transmitted successfully with a low collision probability
(Lemma 1).

4.2.2. Leader selection and localization

After Wsize time has passed from the time of backoff timer
setting, the sensor with the highest RSS volunteers to become



Fig. 4. Traking cycle timing.

Fig. 3. Target tracking cycle.
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a leader. Then, the leader localizes the target using three RSS
values including its own RSS, and uses the location of three
sensors are obtained. Suppose the total number of target-de-
tecting sensors is less than three or the number of successfully
transmitted buzzes without collision is less than three. Then,
the leader cannot perform RVI (neither weighted centroid).
In this case, the target location is estimated by approxima-
tion of Subsection 3.2. Otherwise, at least three RSS values
are available: the leader performs RVI.

4.2.3. Movement-adaptive report scheduling

After localizing the target, the leader is obliged to report
the estimated location to the sink node. Usually, the sink is
a gateway connecting the sensor network to subscribers.
Therefore, reporting to the sink normally incurs multi-
hop message relaying and multiple transmissions which
depends on the hop distance between the leader and the
sink. If the target is stationary or moves around within a
small area, the estimated location does not change notably
as time goes by and the same location estimate (or possibly
with small deviation) is repeatedly reported to the sink. In
these cases, it is not necessary and even wasteful to report
(almost) same location estimates repeatedly.

Rather than reporting every time leader performs locali-
zation, we propose to dynamically schedule a reporting peri-
od considering the target’s movement (e.g., velocity).
Specifically, the current leader compares the current
location estimate Xcurrent with the previously reported loca-
tion estimate Xprevious and report to the sink if the distance
between them |Xcurrent � Xprevious| is longer than Dth. If the
target has been stationary for a long time, the sink would
have received no report and may conclude that the target is
lost or disappeared. To prevent this, we set an upper bound
of the reporting period: if more than Tth time has passed after
the previous-report-reception time Tprevious, the leader
reports to the sink regardless of the above distance condition.
In summary, the leader reports if and only if

jX current � X previousj > Dth

or

T current � T previous > T th; ð7Þ
where Tcurrent denotes the current time. Note that both
Tcurrent and Tprevious are not absolute time but relative time
instance according to the leader’s clock.
If the condition (7) is satisfied, the leader sends out the
report when Wsize time has passed from the backoff-tim-
er-setting time in order to avoid collisions between the
report and the buzzes. However, there is a possibility of
collisions among report messages. Suppose a collision
occurs between the first two buzzes with the highest and
the second highest RSS values. Then, three more buzzes
will be broadcast by sensors which have detected the third,
fourth, and fifth highest RSS values. Because the sensors
with the first and second highest RSS values do not know
the collision, both of them deem their RSS values as the
highest and volunteer as a leader. Moreover, the sensor
with the third highest RSS also deem itself as a leader
because it does not receive the first and second buzzes.
Consequently, the three sensors will try to transmit reports
simultaneously. This case only happens when the first buzz
collides (with the second buzz), and the first buzz collision
probability is derived in the next section. One solution for
this problem is to use a report backoff timer although we
do not include the report backoff timer in the simulation.
Because only three reports contend, the report backoff tim-
er may have a small window size.

4.3. Tracking cycle timing

Fig. 4 shows a timing diagram of the tracking cycle
described in the previous subsection. The total cycle time
Tcycle is

T cycle ¼ W size þ T tx þ T gap;

where Ttx is the one-hop transmission time of a report mes-
sage (we ignore the processing time for localization and the
propagation delay), and Tgap is the time between the re-
port-reception time and the backoff-setting time.



Fig. 5. The limitation of Dth for time synchronization.
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Due to the assumption of 2Rmax communication range,
all target-detecting sensors are assumed to have received a
report message from the previous leader. Therefore, the
time when sensors receive (actually overhear) the report
message from the leader can be used for time-synchroniza-
tion among target-detecting sensors. However, this
assumption limits Dth as illustrated by Fig. 5. DLT denotes
the maximum distance between the previous leader (that
sent the previous report) and the previous target location,
and Emax is the maximum localization error. In the case
of a grid sensor distribution, DLT can be approximated
using the inter-sensor distance: DLT ¼

ffiffi
2
p

2
Dinter sensor. The

solid circle and the dotted circle denote the target’s sensing
range and the previous leader’s communication range,
respectively. Fig. 5 shows the worst case when the distance
between the current target location and the previous leader
is the longest. For the purpose of time synchronization, all
sensors that detect the current target should reside within
the communication range of the previous leader:

DLT þ Emax þ Dth þ Emax þ R 6 2Rmax;

) Dth 6 2Rmax � R� Dinter sensorffiffiffi
2
p � 2Emax.

Suppose that R = Rmax = 25 m (worst case), Dinter_sensor

= 10 m and Emax = 5 m. Then, approximately, Dth must be
7.9 m or less.

Because the reporting interval can be extended up to
Tth(>Tcycle), the leader may not send a report at every Tcycle

interval if the target is stationary. Therefore, a target-de-
tecting sensor may have to send buzzes without receiving
a report up to b T th

T cycle
c times.

5. Analysis of buzz collision probability

In this section, we analyze the probability of successful
buzz transmission and show how many buzz transmissions
are needed to receive three buzzes successfully. Random
sensor distribution is assumed and the sensor density is giv-
en by q.

According to Eq. (6), the backoff timer, Bi, is determin-
istically related to the sensing RSS ri. Because the RSS ri is

larger than the threshold value rth by Eq. (5), the term
r�1=a

i

r�1=a
th
of Eq. (6) ranges (0,1), and from Eq. (5), this term can be
expressed as

r�1=a
i

r�1=a
th

¼ amax

a

� �1=a
� 1

Rmax

� d; ð8Þ

where a is the original signal strength at the target source,
amax is the upper bound of a,Rmax is the upper bound of
the sensing range R, and d denotes the distance between
the target and a sensor. Note that a, amax, R and Rmax are
constants, while d is a variable which ranges (0, R). Eq. (8)
implies that the backoff timer, Bi is proportional to d. By
the definition of Eq. (6) and the implication of Eq. (8), the
range of backoff time window (0,Wsize) linearly maps to the
range of distance (0,R), where the sensing range R is deter-
mined by setting ri = rth and a = 2 as follows:

R ¼ dðri¼rthÞ ¼
ffiffiffiffiffiffiffiffiffi

a
amax

r
� Rmax. ð9Þ

We assume that a collision occurs if the transmission
times for two buzzes overlap. Due to the carrier sensing
capability, a sensor can withhold its transmission if it sens-
es other sensor’s transmission for a carrier sensing time or
more. In other words, if one buzz starts transmission at
time t, then any other transmission starting between t � Tcs

and t + Tcs will cause a collision, where Tcs is the carrier
sensing time (duration). Due to the linear mapping of the
backoff time range (0,Wsize) and the distance range (0,R),
Tcs is translated to Dcs, which is the minimum difference
of distances between the target and two sensors required
to avoid a collision: Dcs ¼ R T cs

W size
. Also, the time instance t

(from the timer-setting time) is mapped to the locus of posi-
tions whose distance from the target is d: d ¼ R t

W size
.

Then, the expected number of transmissions that collide
with a transmission started at time instance t is given by

EcolðdÞ ¼ q �
Z minðR;dþDcsÞ

maxð0;d�DcsÞ
2px dx. ð10Þ

Then, the probability that a transmission started at time
instance t is successful without a collision is given by

P sucðdÞ ¼
1� EcolðdÞ if EcolðdÞ < 1;

0 if EcolðdÞP 1.

�
ð11Þ

Psuc (d) monotonically decreases as d increases. From Eq.
(11), Lemma 1 provides an important observation.

Lemma 1. Early buzzes (possibly from the sensors close to
the target) have a higher successful transmission probabil-
ity than late buzzes. Therefore, the first three buzzes will be
transmitted successfully with a high probability.

Finally, the expected number of attempted transmis-
sions in the range of (0, t) is

HðtÞ ¼ H dðdÞ ¼ q �
Z d

0

2pxdx ¼ q � p � d2 ð12Þ

and the expected number of the successful transmissions in
the range of (0, t) is



Fig. 6. The average numbers of the attempted transmissions and the
successful transmissions by the time t.

Table 2
Parameters for the proposed tracking framework

Notation Parameter Default

Wsize Window size (ms) 100
Tcycle Cycle time (ms) 1000
Tcs Carrier sensing time (ms) 0.32
Rmax Maximum sensing range (m) 25
c RVI step size (m) 1.5
Dth Distance threshold for reporting (m) 5
Tth Time threshold for reporting (ms) 5000

The first four parameters are for general configurations; the fifth one is
specific to RVI; the remaining parameters are specific to movement-
adaptive reporting.
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GðtÞ ¼ GdðdÞ ¼ q �
Z d

0

ðP sucðxÞ � 2pxÞ dx. ð13Þ

Fig. 6 plots H (t) (dotted line) and G (t) (solid line) when
parameters are set as specified in Table 2, amax = 1, and 400
sensors are randomly placed in the area of 200 · 200 square
meters, i.e., q ¼ 400

2002 sensors=m2. As the two lines get closer,
the collision probability becomes ignorable. The expected
number of buzz transmissions until receiving three success-
ful buzzes is H (t 0) when G (t 0) = 3. As shown in Fig. 6, with
a = 0.2, H (t 0) is about 3.09 when G(t 0) = 3. Thus, 3.09 buzz
transmissions are needed in order to receive three buzzes
successfully. With a = 1.0, H (t 0) is about 3.22 when
G (t 0) = 3.

With a = 0.2, G (t 0) @ 1 and H(t 0) is about 1.017 which
means that the first buzz collision probability is
1:017�1

1:017
� 0:017. Likewise, with a = 1.0, H(t 0) such that

G(t 0) = 1 is about 1.04 which means that the first buzz col-
lision probability is about 0.038.

6. Numerical results

In this section, we evaluate the proposed tracking frame-
work which is implemented on QualNet simulator [4] and
Matlab [21]. The surveillance area is 190 · 190 m2. Four
hundred sensors including a sink are deployed in this area
with three topologies: grid, uniform, and random distribu-
tion. A static routing path forming a tree rooted at the sink
is used in the network layer and IEEE 802.11b is adopted
as the MAC layer protocol. The sensing range of a sensor
device is 25 m and the transmission range is 50 m (twice the
sensing range). We adopt the random-waypoint model as a
mobility model for the target, which is moving around
within the surveillance area. The maximum and minimum
speed of the target movement are 20 and 1 m/s, respective-
ly. The default pause time is set to 20 s unless a specific
comment is given. Throughout the simulation experiments,
Tcycle is one second. Each distance estimate from a corre-
sponding RSS measurement contains a random noise
component which follows the White Gaussian noise model
of Nð0; rÞ, and noise magnitude (r) has a default value
of 1.6 m. The default sensor topology is a uniform
distribution. Other default parameter settings are given
by Table 2.

The performance metrics are as follows:

1. Localization error: the difference between the true target
location and the estimated location at the leader.

2. Tracking error: the difference between the true target
location and the most recently reported location at the
sink.

3. The total number of reports sent by the leaders.
4. The total number of transmitted messages: the sum of

the buzz messages, the report messages sent by the lead-
ers, and the report-forwarding messages relayed by
intermediate sensors between the leaders and the sink.

5. The number of iterations until RVI converges.
Four different combinations of localization and report
scheduling algorithms are compared:

• approximation + non-movement-adaptive (Appr),
• Newton’s method + non-movement-adaptive (Newton),
• RVI + non-movement-adaptive (RVI + Non), and
• RVI + movement-adaptive (RVI + Adap).

Here, Newton’s method refers to the nonlinear optimiza-
tion approach in Section 3.2.

The performance comparison of the four combina-
tions are shown in Table 3, which comes from ten runs
of the simulation experiments. Overall, with 1.6 m noise
magnitude, RVI shows about half of the localization
error compared to the approximation localization algo-
rithm and reduces the standard deviation. Moreover,
the localization error and standard deviation of RVI



Table 3
Performance comparison under uniform sensor distribution and 1.6 m
noise magnitude

Localization
error (m)

Tracking error
(m)

Total
reports

Total
messages

Average SD Average SD

Appr 4.35 2.12 4.43 2.33 1000 10,097
Newton 2.21 1.54 2.29 1.76 1000 10,228
RVI + non_adap 2.41 1.61 2.48 1.84 1000 10,252
RVI + adap 2.41 1.61 2.83 2.27 439 6,444

Other parameters follow Table III.
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are close to the performance of the sophisticated New-
ton’s method. Also, the adaptive reporting framework
reduces the total report messages from the leaders down
to less than a half of that of the non-adaptive reporting
framework. However, this reduction of the report mes-
sages slightly increases the tracking error compared to
the localization error.

Fig. 7 plots the tracking error versus the noise magni-
tude. Since the approximation localization algorithm has
a coarse-grained localization error, the effect of small noise
magnitude is not noticeable. However, as the noise magni-
tude increases, all of the four combinations show increas-
ing tracking errors. Also, the difference of the localization
error between the approximation algorithm and the RVI
algorithm declines as the noise magnitude increases.

Fig. 8 compares the number of the total messages (buzz
messages, report messages, and report-forwarding messag-
es) of non-movement-adaptive reporting and movement-
adaptive reporting. Obviously, as the pause time (between
two moving periods) increases, the number of the total
messages falls off while slightly decreasing tracking errors
(that is not shown in the graph). Note that even when
the pause time is zero, the total number of messages of
the adaptive reporting framework is notably less than that
of the non-adaptive reporting framework.

Fig. 9 shows two kinds of outcomes. First, it plots the
tracking error as the step size of the RVI algorithm increas-
es in three topologies: random, uniform, grid. As also hinted
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in Table 1, this figure indicates that the more regularly the
sensor nodes are deployed, the less becomes the localiza-
tion error (and hence the tracking error). Second, as the
step size of RVI increases, the number of RVI iterations
decreases with a small turnover at the step size 1.5.

Fig. 10 shows the tracking error and the number of the
total messages with different distance thresholds (Dth) as
the time threshold (Tth) varies. The noise magnitude is
0.2 m. The time threshold of zero second indicates the
non-movement-adaptive reporting. Note that there is a
tradeoff between the tracking error and the message over-
head. As the time threshold and/or the distance threshold
increases, the tracking error increases and the message
overhead decreases. The message overhead is more sensi-
tive in response to the change of the time threshold than
the tracking error because the tracking error can not be less
than the localization error that depends on the noise mag-
nitude and the step size.

7. Conclusions

The proposed framework consists of three main compo-
nents: RVI localization, 3-neighbor sensor discovery, and
the movement-adaptive reporting mechanism. Ratiometric
Vector Iteration (RVI) is based on distance ratio estimates
rather than absolute distance estimates which are often
impossible to calculate. In the RVI algorithm, only three
closest sensors (to the target) broadcasts their received sig-
nal strengths, which are called buzzes. The proposed RSS-
based backoff timer enables successful buzz transmissions
of the three closest sensors with a low collision probability.
Also, a reporting algorithm that is adaptive to the target’s
movement is introduced to further reduce the energy con-
sumption. That is, the energy efficiency is achieved by
reducing the number of messages, while maintaining the
accuracy required by applications. Extensive simulation
results show that the proposed RVI algorithm renders less
than half of the localization error of the approximation
algorithm and this result is close to that of nonlinear opti-
mization. Moreover, the proposed report scheduling algo-
rithm reduces the total number of transmitted messages
substantially compared to the baseline framework which
is not adaptive to the target movement.
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