

Content-Oriented Networking as a Future Internet Infrastructure:

Concepts, Strengths, and Application Scenarios

Multimedia & Mobile Communications Lab. Seoul National University

Kideok Cho

(kdcho@mmlab.snu.ac.kr)

2007. 6. 20.

Contents

- Motivation
- Content-Oriented Networks (CONs)
 - Concepts of CONs
 - Strengths of CONs
 - Application Scenarios of CONs
- Current Research Activity on CONs
- Conclusion

Paradigm Shifting

Traditional Internet Design

Host-to-Host Paradigm

Real Internet Usage

- Content Oriented traffic is dominant
- Ex. Content Delivery Network (CDN): cooperating networked computers providing content delivery services
- Peer-to-Peer Network (P2P): cooperative network for file sharing

3/14

Current Status of Internet

Current usage of Internet is Data-centric

 Overwhelming use (>99% by most measurements) of today's networks is for a machine to acquire named chunks of data (like web pages or emails)

Traffic volume per content type Germany, BitTorrent 2007

5/14

Redesigning the Internet

Problem of current Internet

- Inconsistency between the Internet design and the real usage
- Unnecessary indirection overhead to retrieve contents

Redesign the Future Internet based on the content-oriented paradigm!

Concepts of CONs

Content-Oriented Paradigm

Only focus on the data itself, not on the communication party

Content-Oriented Network

- A network based on Content-Oriented Paradigm
- Users are just specifying which data they need
- CON will provide efficient ways to retrieve the data from one of the candidate sources
 - To support efficient retrieval, a CON may exploit caching mechanism
- Synonyms: Content-Oriented, Content-Centric, Content-Based, Data-Oriented, Data-Centric Network

7/14

Strengths of CONs

Pervasive Experience

- CONs: a huge storage for the contents
- Users can access the contents through CON even though they are not stored in a local system

8/14

Performance Improvement

- The more popular a content is, the more probably it will be cached/stored in the local CON router¹⁾
 - Most of the popular contents will be served by the CON routers which is located near the users
 - The overall congestion and latency of the CON will be decreased as contents will be uniformly distributed in the network
 - Performance improvement will be achieved at the expense of storage overhead at the service providers

1) We refer to the network elements in the CON as CON routers

9/14

Application Scenarios of CONs

11/14

Application Scenarios of CONs

Current Research Activity

- Our Approach: DACON
 - Content-oriented Overlay Network
 - Formed by users' participation
 - Currently implementing the DACON testbed

Conclusion

- The inconsistency between the Internet design and the real usage motivates us to propose Content-Oriented Networks
- Content-oriented paradigm
 - Users care only about the data
 - Network should provide the requested data to the users in an efficient way
- Strengths of CONs
 - pervasive experience, performance improvement, flexible dissemination

Q & A

15/14