
SMIC: Subflow-level Multi-path
Interest Control for Information

Centric Networking

Junghwan Song

Seoul National University

Munyoung Lee

Electronics and
Telecommunications Research

Institute

Ted “Taekyoung” Kwon

Seoul National University

Outline

• Introduction

• SMIC design

• Evaluation

• Conclusion

2

Introduction

3

Why we need multi-path Interest
control?
• ICN inherently has a chance to exploit multiple paths (subflows) for a

flow
－ An FIB entry can have multiple outfaces

－ ICN forwarders can choose different outfaces for consequent Interests of a
consumer

－ Forwarders can also choose multiple outfaces for an Interest

• Congestion controls for multiple paths are different from those of single
path

－ The number of congestion windows

－ Path selection

4

Subflow-level Interest control

• Most of window-based schemes have a congestion window per a flow
－ Due to difficulty of identifying each path in ICN

➔ We propose Subflow-level Multi-path Interest Control (SMIC)
－ Proposing Interest window per subflow

－ Introducing path identification & forwarding scheme

－ Providing design consideration areas of multi-path congestion control

－ Evaluating SMIC performance

5

SMIC design

6

Design criteria

• Challenging issues on designing multipath Interest control mechanism
－ i. Congestion control

• How to control congestion of multiple subflows?

－ ii. Subflow identification & forwarding
• How to identify multiple subflows, forward Interests through them?

• Our solution
－ Put subflow-level congestion windows for congestion control

－ Put path identifier & trajectory identifier for path identification & forwarding

7

Why subflow-level congestion window?

• Limits of single congestion window for multiple paths
－ i. A path experiencing frequent packet drops may decrease overall throughput

－ ii. It is hard to infer intensity of congestion using packet losses
• Out-of-order packet delivery

• Hard to identify a trajectory of packet

－ iii. We need to select a path when there is a packet to be sent

• Subflow-level congestion window can solve above issues

8

Multi-path window control algorithm

• Our subflow-level congestion control’s goal
－ Provide friendliness with single-path flows

－ Get more throughput than when using single-path mechanism

• We introduce bottleneck-sharing subflow-aware window control
－ Basically based on MPTCP algorithm

－ However, MPTCP increases cwnd conservatively
• For the worst case (all subflow shares a bottleneck link)

－ Improve performances by introducing aggressive window increase on non-
bottleneck-sharing subflows

9

Bottleneck-sharing subflow detection

• We use two conditions
－ Timeout history

－ Estimated bottleneck bandwidth

• Consumer-side operations
－ Store a timeout history of each subflow

• e.g. n timeouts times

－ Estimate bottleneck bandwidth of each subflow
• e.g. using simple packet-pair algorithm

－ If similarities between two subflows exceed threshold t, regard them as
bottleneck-sharing subflows

10

Path identification & forwarding

• Two requirements for realizing subflow-level congestion control
－ i. Identifying each subflow to manage subflow information

－ ii. Forwarding Interests to a specific subflow

• PathSwitching (ICN `17) satisfied requirements with path label, but
－ Path label grows up as hop count increases

－ Although encoding them, false positive or length problem still exist

• We introduce path identifier and trajectory identifier
－ Both of them are fixed-length identifiers in header

－ Path identifier in Interest header provides path identification & forwarding

－ Trajectory identifier in Data header guarantees one-on-one matching between
path identifier and real path

11

SMIC operation

Initial phase

• Consumer identifies subflows by path identifiers (path ids)
－ A path id is considered as a subflow

• Consumer sets per-subflow (per-path id) information
－ cwnd, # of on-the-fly Interests, etc.

Path id cwnd … …

1 … … …

7 … … …

Consumer Forwarder
Content holder

12

SMIC operation

Sending Interest

• Consumer sends Interests with path ids
－ A new field ‘path id’ in Interest headers

• Interests are sent with path id n when
－ (cwnd of path id n > # of on-the-fly Interests of path id n)

Path id cwnd … …

1 … … …

7 … … …

Consumer Forwarder
Content holder

1 Prefix: /icn
Interest w. path id 1

13

SMIC operation

Forwarding Interest

• Forwarder forwards Interests according to their path id
－ e.g. if hash(n) modulo m = k, then forward to kth outface
－ n : path id
－ m : # of outfaces on matched FIB entry

• Interests with same path id are forwarded to same path
－ Unless FIB entry or m do not change

Consumer Forwarder
Content holder

Name prefix face

/icn f0, f1

… …

1 Prefix: /icn

Hash(1) % 2 = 0

Path id cwnd … …

1 … … …

7 … … …

14

SMIC operation

Path id ambiguity

• Interests with different path ids might be forwarded to same path
－ Due to hash collision or modulo m

• N path ids on same path result in
－ N times more aggressive path utilization

Consumer Forwarder
Content holder

Name prefix face

/icn f0, f1

… …

7 Prefix: /icn

1 Prefix: /icn

Hash(1) % 2 = 0

Hash(7) % 2 = 0

Path id cwnd … …

1 … … …

7 … … …

15

SMIC operation

Data return

• Datas are created and trajectory ids are initialized
－ Initial trajectory id: Content holder’s own value (hash of MAC addr, etc.)

• Datas are forwarded by breadcrumbs using PIT entries

Consumer Forwarder
Content holder

0

0

Data w. trajectory id 0

Content holder’s own value: 0

16

SMIC operation

Trajectory id update

• Forwarder updates trajectory ids in Datas
－ Hash trajectory id with forwarder’s own value

• Trajectory ids can guarantee their uniqueness on real paths, if
－ Size of trajectory id is sufficient

－ Good hash function is used

Consumer Forwarder
Content holder

0

0

Hash(0, 4) = 5

Hash(0, 4) = 5

Forwarder’s own value: 4

17

SMIC operation

Trajectory id update

• Forwarder updates trajectory ids in Datas
－ Hash trajectory id with forwarder’s own value

• Trajectory ids can guarantee their uniqueness on real paths, if
－ Size of trajectory id is sufficient

－ Good hash function is used

Consumer Forwarder
Content holder

5

5

Hash(0, 4) = 5

Hash(0, 4) = 5

Forwarder’s own value: 4

18

SMIC operation

Consumer actions

• Consumer merges path ids with same trajectory id
－ Same trajectory id means Data packets traverse exactly same path

• Consumer changes subflow-relevant information
－ cwnd size, RTT, etc.

Consumer Forwarder
Content holder

5

5

Path id cwnd … …

1 … … …

7 … … …

Same trajectory id
➔ merge

19

SMIC operation

Consumer actions

• Consumer merges path ids with same trajectory id
－ Same trajectory id means Data packets traverse exactly same path

• Consumer updates subflow-relevant information
－ cwnd size, RTT, etc.

Consumer Forwarder
Content holder

5

5

Path id cwnd … …

1 … … …

20

Evaluation

21

Friendliness with
single-path flows

• 3 SMIC flow and 1 single flow share the bottleneck

• All of flow shows similar content retrieval time

• Cwnd tracking shows similar tendency

• Difference comes from cache hit ratio

22

Exploiting available
network resources

• SMIC and MPTCP utilize overall network resources, but single does not

• SMIC and single show faster convergence time than MPTCP

• SMIC shows the best performance due to fast convergence + network
resource utilization

23

Conclusion

• There are challenging issues to design multi-path Interest control for
ICN

－ How to identify each path (subflow)?
－ How to forward Interests to specific path?
－ How to control Interest rate?

• We propose SMIC, subflow-level multi-path Interest control mechanism
－ Path identifier & trajectory identifier for identification/forwarding
－ Subflow-level Interest window
－ Bottleneck-sharing subflow-aware window control

• We show SMIC performs better than single or MPTCP flow on ICN

24

Thank you for your
attention!

25

26

Appendix A.

SMIC window control

Window increase
- If a subflow r does not share bottleneck

with other subflows
➔ increase wr by 1/wr

- If a subflow r shares bottleneck with n
other subflows
➔ increase wr by 1/n2wr

Window decrease
- divide wr by 1/2

Bottleneck-sharing subflow detection
- similarity between timeout histories
- similarity between estimated bottleneck

bandwidth
27

Appendix B.

Evaluation environments

• Simulator: Customized ndnSIM (based on ns-3 network simulator)

• Content store is enabled

• Requests of consumers are independent

28

Appendix C.

Competing with
single-path flows

• MPTCP schemes yield their bandwidth share to single flow due to slow
convergence

• SMIC equally use bandwidth with single flow at each bottleneck

• 2~5 single flows with 1 SMIC flow utilizing 2~5 subflows (red
lines)

• 2~5 single flows with 1 MPTCP LIA flow utilizing 2~5 subflows
(green lines)

• 2~5 single flows with 1 MPTCP OLIA flow utilizing 2~5
subflows (blue lines)

29

Appendix D.

Comparison between SMIC and alternatives

• SMIC as a representative of window-based scheme

• MIRCC (ICN `16) as a representative of rate-based scheme

30

