WAVE: Popularity-based and Collaborative
In-network Caching for Content-Oriented Networks

Kideok Cho, Munyoung Lee, Kunwoo Park,
Ted “Taekyoung” Kwon, Yanghee Choi, and Sangheon Pack*

Seoul National University, Korea University*
2012. 3. 30.

s ||

Hultimedia and Mabile communications Laboraton)

(o
)
i -
O
©
O
o
o
()
P .
)
=

What to Cache?

What to Replace?

~lac A~f \A/A\/LC
[J co VUl VVAVL

hf\f‘:
L/COI

Popularity-
based

gll

« More chunks to be cached for more popular contents

« WAVE exponentially increases the number of chunks to be cached
as the access count increases

« No prior knowledge of content access patterns

Simple « WAVE uses only two counters per content file to decide
caching

« No central server for caching decision

Bl=le=lgiiel 4=l « In WAVE, content caching is decided by each CON router
independently with its local information

\A/JAN/E MW/
VVAVL UVC

r\ 7
I

View

* Distribute/diffuse content chunks to the network
entities (such as routers)

— Diffuse chunks as the content request changes

— To make “the cache hits of contents” happen earlier
(closer to end users)

 As a consequence,

— Network utilization will be improved: the number of
duplicate content delivery (thus total traffic volume) can
be reduced

— End users will experience reduced latency for content
download

— The overhead of cache management will be reduced

U LdllICT

\A/A\/ . ~
IIIH. vviid

C |~ A + +
VVAYV L EJ L L

* As the access count of a content file increases, WAVE
exponentially increases the number of chunks of the content file
to be cached

Algorithm 1 Chunk Diffusion Algorithm

. x: caching base (e.g., 2,3,...)
n: chunk window state (initial value: 0)
t: total number of cached content chunks
cached: cached chunk id at the downstream router
i: id of requested chunk

if cached < i < Z_l 0 7 then

7

I 8: mark chunk i to [')e cached Mark content Chunk
9: cached +— 1

I 0: else if 7 < cached then to be CaChed
11: mark chunk 7 to be cached

l 12 cached «— 1

13: n+ |log, i]
14: end if /

16: if i ==t then

177 nentl In.Cl‘eaSG .
L}Bi end if] window size

20: Transfer the requested chunk i

I

W U LdllICT

~N If‘f\lf'\l"\f‘f\ 'aY a
vviidal LU 1CpPIidiT, VvVIICI

A~ +
C L

 What to replace

— WAVE uses least recently used (LRU) and maintains
access history in the unit of a content to find a
victim to be replaced

— WAVE replaces the last chunk for the incoming
chunk

e Where to cache

— The content chunks are cached towards the
direction where the content request comes
considering the spatial locality

— WAVE caches content chunks in a hop-by-hop
manner to fully utilize the in-network storages

WAVE Operation Illustration

@ End Host

Original
Server

CON
Router

Content

Content
Chunk

manes Cached
Chunk

— > Content
Request

— 5 Content
Retrieval

s~ 11

C
®

+
L

7/~ ¥\ Elf'\\l IF’\I/\M/\V‘\'I‘(‘
Ull LITIVIIUIHTICIHILWL

Simulation Environments

Simulator
Topology

Number of routers &
end hosts

Content distribution

Request distribution
Cache size
Content Routing

Comparison

Discrete event-driven simulator

1 transit domain and 5 stub domains generated
using GT-1TM

55 routers & 1,000 end hosts

Randomly distributed 100,000 contents (1GBytes,
100 chunks)

Zipf distribution with parameter 1.0
10GBytes

En-route Cache Model (shortest path to the
original server)

Client-Sever, CDN, AllCache, UniCache,
ProbCache

WAVE

AllCache
(Cache all)

ProbCache
(Probabilistic
caching)

UniCache
(Uniform
caching)

CDN

Client-Server

What to cache

Exponentially
Increasing number of
chunks

All incoming chunks

Incoming chunks with a
certain probability

Incoming chunks

Popular contents**
(Top x%)

N/A

Where to cache What to replace
Next downstream CON LRU*

router

All CON routers LRU

All CON routers LRU

One CON router along LRU
the returning path

One CDN server per AS N/A
(at the best position)

N/A N/A

*: Results with LFU show similar performances

**: The total # of files stored in CDN servers s
the same as those of other schemes

C:MI II"\'I':AIF\ Df\f‘l II'I'(‘ /1 /’)\
SQITTUIAaliVUll INCOUILS \1/4£)
90000000
§ Z 7.89 E 80000000 g
Ty E 70000000
G o
5 =55 546 E 60000000
éS 305 426 - 5 50000000 4 3p507 Lo
S 4 T 40000000 -
% 3 % 30000000 -
tiuo 2 @ 20000000 -
E 1 g 10000000
0 > |
WAVE ProbCache AllCache CDN CS < ’ WAVE ProbCache AllCache CDN cs
Schemes Schemes

WAVE achieves the smallest average hop
count between a host and a content-
holding place

— Resulting in faster content retrieval

By exploiting in-network storages, WAVE
can cache the contents at CON routers
which are closer to the end hosts than
the CDN servers

WAVE achieves the smallest inter-ISP
traffic volume (except for CDN)

Since CDN stores most popular contents
in advance, it can achieve smaller inter-
ISP traffic volume than WAVE

— WAVE downloads content from outside
the ISP at least once

10

C:mu ||—-\-|-:r\v-\ DAci I (7)) /D
QITTITUIAUIULIT N\COoOUIL \L/L}
0.8 4.5E+07
07 B First-hop C-router §4.0E:O7 | [Accessed 96.0%
O 06 0.52 W Average g 3.5E+07 - |MNon-accessed
E 05 - : 0.48 0.48 & 3.0E+07
£, @ 2.5E+07
o v 206407
5 %37 S 1,5E+07
802 - ..‘;_’ 1.0E+07
0.1 - g SOE+06 o oo

WAVE ProbCache UniCache AllCache
Schemes

£ 0.0E+00
é WAVE ProbCache UniCache AllCache

Schemes

WAVE achieves the highest cache hit
ratio than the other schemes (both 1st

hop router and on average)
— By caching the popular chunks more
(exponentially increasing caching)

AllCache shows the lowest cache hit
ratio due to its popularity-blind and
aggressive caching

e Less than half (42.8%) of chunks are
replaced without being accessed in
WAVE due to its popularity-based

chunk caching algorithm
— Resulting in efficient cache management

e In the other schemes, more than 87%
of content chunks are not accessed

before being replaced
11

r\

F"\ f‘III
UL

"

SIOoN

« WAVE is a simple and decentralized caching
algorithm in content-oriented networks

« WAVE exponentially increases the number of
cached chunks of a content as its access count
InCcreases

— WAVE achieves higher cache hit ratio and lower number
of cache replacements

« We will implement WAVE using CCNx and conduct
large-scale experiments over PlanetLab

