
WAVE: Popularity-based and Collaborative 
In network Caching for Content Oriented NetworksIn-network Caching for Content-Oriented Networks

Kideok Cho, Munyoung Lee, Kunwoo Park,
Ted “Taekyoung” Kwon, Yanghee Choi, and Sangheon Pack*Ted Taekyoung  Kwon, Yanghee Choi, and Sangheon Pack

Seoul National University, Korea University*
2012. 3. 30.



Three Main Issues in CON CachingThree Main Issues in CON Caching

What to Cache?
Cache Popular OnesCache Popular Ones WAVE

Cache All

C h S l ti l

h l
Where to Cache?

Cache Selectively

What to Replace?

LRU
LRFU

All CON Nodes

LRU

LFU
Priority

Specific CON Node

2



Design Principles of WAVEDesign Principles of WAVE

• More chunks to be cached for more popular contents

• WAVE exponentially increases the number of chunks to be cached 
Popularity-

based as the access count increasesbased

• No prior knowledge of content access patterns

• WAVE uses only two counters per content file to decide 

caching

Simple 
caching

• No central server for caching decisionNo central server for caching decision

• In WAVE, content caching is decided by each CON router 

independently with its local information

Decentralized 

3



WAVE OverviewWAVE Overview

Di t ib t /diff t t h k t th t k• Distribute/diffuse content chunks to the network 
entities (such as routers)
– Diffuse chunks as the content request changesq g
– To make “the cache hits of contents” happen earlier

(closer to end users)

• As a consequence,
– Network utilization will be improved: the number of 

ff
p

duplicate content delivery (thus total traffic volume) can 
be reduced

– End users will experience reduced latency for content p y
download

– The overhead of cache management will be reduced

4



WAVE Algorithm: What to cacheWAVE Algorithm: What to cache

• As the access count of a content file increases WAVE• As the access count of a content file increases, WAVE 
exponentially increases the number of chunks of the content file 
to be cached

Mark content chunkMark content chunk
to be cached

IncreaseIncrease 
window size

5



What to replace Where to cacheWhat to replace, Where to cache

Wh t t l• What to replace
– WAVE uses least recently used (LRU) and maintains 

access history in the unit of a content to find a y
victim to be replaced

– WAVE replaces the last chunk for the incoming 
chunkchunk

• Where to cacheWhere to cache
– The content chunks are cached towards the 

direction where the content request comes
considering the spatial localityconsidering the spatial locality

– WAVE caches content chunks in a hop-by-hop 
manner to fully utilize the in-network storagesy g

6



WAVE Operation Illustration

End Host

(1)

CBA
H1

H3
Original
Server

CON

H2
H3

(3)

(2)

CON
Router

C t t

(4)

H1Content

Content
Chunk

CBA
H1

H2
H3

(6) (5)

Chunk

Cached
Chunk (8)

(7)

Content
Request CBA

H1

H2
H3

( )

(10) (9)
Content
Retrieval

H2
(11)

(10) ( )

7



Simulation EnvironmentsSimulation Environments
Simulation Environments
Simulator Discrete event-driven simulator
Topology 1 transit domain and 5 stub domains generated 

i  GT ITMusing GT-ITM
Number of routers & 
end hosts

55 routers & 1,000 end hosts

Content distribution Randomly distributed 100,000 contents (1GBytes, 
100 chunks)

Request distribution Zipf distribution with parameter 1 0Request distribution Zipf distribution with parameter 1.0
Cache size 10GBytes
Content Routing En-route Cache Model (shortest path to the 

original server)
Comparison Client-Sever, CDN, AllCache, UniCache, 

ProbCacheProbCache

8



ComparisonComparison
Wh t t h Wh t h Wh t t lWhat to cache Where to cache What to replace

WAVE Exponentially
Increasing number of 
h k

Next downstream CON 
router

LRU*

chunks

AllCache
(Cache all)

All incoming chunks All CON routers LRU

ProbCache
(Probabilistic 
caching)

Incoming chunks with a 
certain probability

All CON routers LRU

UniCache
(Uniform 
caching)

Incoming chunks One CON router along 
the returning path

LRU

CDN P l t t ** O CDN AS N/ACDN Popular contents**
(Top x%)

One CDN server per AS
(at the best position)

N/A

Client-Server N/A N/A N/A

*: Results with LFU show similar performances
**: The total # of files stored in CDN servers is 

the same as those of other schemes
9



Simulation Results (1/2)Simulation Results (1/2)

• WAVE achieves the smallest inter-ISP 
traffic volume (except for CDN)

• Since CDN stores most popular contents

• WAVE achieves the smallest average hop 
count between a host and a content-
holding place Since CDN stores most popular contents 

in advance, it can achieve smaller inter-
ISP traffic volume than WAVE

– WAVE downloads content from outside 
th ISP t l t

– Resulting in faster content retrieval

• By exploiting in-network storages, WAVE 
can cache the contents at CON routers 
which are closer to the end hosts than the ISP at least oncewhich are closer to the end hosts than 
the CDN servers

10



Simulation Results (2/2)Simulation Results (2/2)
96.0%

42.8%
91.9%

87.1%

• Less than half (42.8%) of chunks are 
replaced without being accessed in 
WAVE due to its popularity-based 
chunk caching algorithm

• WAVE achieves the highest cache hit 
ratio than the other schemes (both 1st

hop router and on average)
– By caching the popular chunks more chunk caching algorithm

– Resulting in efficient cache management

• In the other schemes, more than 87% 
f h k d

By caching the popular chunks more 
(exponentially increasing caching)

• AllCache shows the lowest cache hit 
ti d t it l it bli d d of content chunks are not accessed 

before being replaced
ratio due to its popularity-blind and 
aggressive caching

11



ConclusionConclusion

WAVE i i l d d t li d hi• WAVE is a simple and decentralized caching 
algorithm in content-oriented networks

• WAVE exponentially increases the number of 
cached chunks of a content as its access countcached chunks of a content as its access count 
increases
– WAVE achieves higher cache hit ratio and lower number g

of cache replacements 

• We will implement WAVE using CCNx and conduct 
large-scale experiments over PlanetLab

12


