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Why Power Control …?

Conserve energy    … prolong battery life

Mitigate interference … increase network capacity

Adapt to channel variations   …  support QoS

Reduce RF radiation exposure

…

Support network control functions ++

Fall-back position:  isolate transmissions      … suppress power issues



Approach / Strategy

Wireless Networking
Design Space

Huge/complex design space of wireless networking … little explored!

Formulate “canonical” models and establish design reference points

“Triangulate” between reference points



Perspective

Network control perspective / instead of  digital comm. one

Power control … part of network control

Control dilemmas, decision making, trade-offs

Resource management in varying environments

Design drivers … efficiency, scalability, robustness … etc.

Separation of concerns… 

Separation of time scales…

…transmission …< …control… < …mobility…



Method / Tactical Plan

Development of an modeling framework to capture tradeoffs

Development of design methodology

Coping with design complexity:

Fundamental understanding of “key effects” and performance limits

Justified Heuristics / as opposed to ad hoc

Verify by simulation 

Establish performance gains

Fine-tune parameters in particular application scenario



Operational Scenarios…

Cellular / Single Hop…

Ad Hoc…

Networked wireless terminals…

Networked embedded devices…

Densely/deeply networked spaces

Operational abstraction    …interfering communication links



Talk Agenda

1)  Power Control and Bandwidth Contention

2) Noninvasive Probing vs. Interference Sensing

3)  Power/Mode Controlled Multiple Access    … M-PCMA

4) Buffer Control, Pre-fetching, Caching (MAC to APP)

Stripped-down versions of the design problems…

…as simple as possible, but not simplistic

Spotlight the tradeoffs… and control dilemmas…



Power Control / Bandwidth Contention
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Wireless Network   …   collection of interfering communication links

Problem: find power vector satisfying QoS constraints    … may not exist!



Bandwidth Contention / Two-Link Example … Intuition

1 1 2 11 1 12 2 1 R (P , P )    G Pq  q q- G P n  ... (1) ≥ ≥⇒ 1P

11G

2P

12G
22G

21G

2 1 2 22 2 21 1 2 R (P , P )    G Pq  q q- G P n  ... (2)≥ ⇒ ≥

1P

2P

feasible region

*P q

q

q

(1)

(2)

MULTILINK NETWORK

feasible region = multi-dim. cone

q increases:

feasible region shrinks, 
P* increases

#links increases:

feasible region shrinks,
P* increases



Bandwidth Contention / Finding P* …
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Channel Probing vs. Sensing

Two Channels…

Which one should be chosen?

The one with least

primary + induced interference 

or least resistance
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PC-Probe & Admission Control
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PC-Probe & Channel Selection
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PC-Probe Benefits

Admission Delay vs. Load (2 channels) 
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What about DELAY ???

Overarching theme: 

Individual link perspective : adapt to changing environment and  
utilize windows of opportunity 

Interaction perspective:  cooperate to make the environment “nice”

Key tradeoff:

delay cost vs. power cost



Power Controlled Multiple Access / PCMA
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s(p,c)

• Slotted time / Markovian model / c = channel stress (interf.) fluctuates

• B(b) = backlog cost/stress,  p = power cost …  delay vs. power tradeoff

• s(p,c) = prob. of success / p-increasing, c-decreasing

• Dilemma/Decision … dynamic programming formulation: 

What power to transmit at now, 

given the backlog stress and channel stress,

to minimize the average power?



Power Control / PCMA

transmitted power

X(b) = backlog pressure

channel stress / interference
aggressive soft backoff hard backoff



Mode-Power Control / M-PCMA

m,p

b
c

Mode  m ?    … overhead cost O(m)

Modulation scheme

Coding scheme

Channel selection

Access point

Diversity scheme

…

Power!

Dilemma/Decision:

What mode to use now, 

given the backlog stress and channel stress,

to minimize the average cost?



Mode-Power Control / An Example

m,p

b
c

Mode  m = transmit l(m) packets in one slot  

s(k;m,p,c) = prob. 

k packets received correctly  &

l(m) – k will be retransmitted,

given that mode m is used at power p and the

channel stress is c



Mode-Power Control / M-PCMA

m,p
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Cost-Based  Formulation / Dynamic Programming / Optimal Control Policy

Optimal Mode:    m*(b,c)

Optimal Power:   p*(b,c)

{ }cc'm, p k,c'
V(b,c) = min    +O(m) +   rs p + B(b)  V(b(k;m,p -k,,c) c') ∑



Mode-Power Control / M-PCMA

transmitted power

channel stress / interference

soft backoff mode switchingaggressive

X(b) = backlog pressure

m m-1



Power Controlled Prefetching / Caching

Interference –
Soft Connectivity

Server

Mobile 
Terminal

Good channel period = window of opportunity to fetch  lots of data at low power cost

Bad channel period = pay very high power & delay premium to fetch data

Instinct = fetch and cache lots of data when you can…

Risk = may have to evict/drop data for nothing, if targets missed…

DECISIONS: 1) what/when to (pre)fetch, 2) at what power, 3) what to evict…



Power Controlled Prefetching / Caching

Cost Structure: 

1) Per item access delay cost,

2) Power + BW cost

3) Item eviction risk

Decision/Control:  

1) attempt B B’

2) at power p

User ProfilerChannel Profiler

Time slotted / Markovian modelling
State: (u,B,c)

p

B
c

Data Item Pool

u(1) u(3)u(2)

user requests

s(p,c)



Power Controlled Prefetching / Caching

Dynamic Programming Formulation

High complexity due to buffer combinatorial states

Explore ways to cope with complexity

High performance power/buffer control policies

Look-ahead strategies

MAC APP entanglement!



No Pre-fetching (easy)
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Linear Request Chain
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User state is a linear chain

Walk recursively  h steps in 
the chain and

Prefetch up to h items 
(depth)

Deep prefetching improves 
the performance 
dramatically!



Look-Ahead Trees
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• Same method generalizes
to a tree user-state space

• Extract a look-ahead tree,
sub-tree of the user state

• Apply the Bellman’s equations 
to calculate a cost for each data-
item of the look-ahead tree 
(recursive walk from leaves to 
root)

• User State Space: 100 states and 
85 distinct data items, 2 to 5 
neighbors for each state

• Buffer capacity b=10



Conclusions

Power control is a core element of various aspects of network control

Simple, scalable, robust controls are gradually being developed

Much more to be done … both in research …and in CMOS!

Did not discuss…

Min-power routing

Computation over wireless

…

Power control ARCHITECTURES!
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